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Abstract

Psychologists have proposed that many human-object in-
teraction activities form unique classes of scenes. Recogniz-
ing these scenes is important for many social functions. To
enable a computer to do this is however a challenging task.
Take people-playing-musical-instrument (PPMI) as an ex-
ample; to distinguish a person playing violin from a person
just holding a violin requires subtle distinction of charac-
teristic image features and feature arrangements that dif-
ferentiate these two scenes. Most of the existing image rep-
resentation methods are either too coarse (e.g. BoW) or
too sparse (e.g. constellation models) for performing this
task. In this paper, we propose a new image feature rep-
resentation called “grouplet”. The grouplet captures the
structured information of an image by encoding a number
of discriminative visual features and their spatial config-
urations. Using a dataset of 7 different PPMI activities,
we show that grouplets are more effective in classifying and
detecting human-object interactions than other state-of-the-
art methods. In particular, our method can make a robust
distinction between humans playing the instruments and hu-
mans co-occurring with the instruments without playing.

1. Introduction

In recent years, the computer vision field has made great

progress in recognizing isolated objects, such as faces and

cars. But a large proportion of our visual experience in-

volves recognizing the interaction between objects. For ex-

ample, seeing a human playing violin delivers a very differ-

ent story than seeing a person chopping up a violin - one is a

musician, the other is probably a contemporary artist. Psy-

chologists have found that different brain areas are involved

in recognizing different scenes of multiple objects [17] and

in particular, there are neurons that react strongly upon see-

ing humans interacting with objects [15]. Such evidence

shows that the ability to recognize scenes of human-object

interactions is fundamental to human cognition.
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Figure 1. Recognizing a person playing violin versus not playing violin

requires subtle discriminations of image features. Our algorithm discovers

discriminative features called grouplets that encode rich, structured infor-

mation for such tasks. In the left figure, three sample grouplets are shown

in three different colors. Note that one grouplet (e.g. the cyan one) is

represented by multiple image patches and their spatial configurations. In

the right figure, we show that some information of the grouplets from the

left is missing (their hypothetical locations are indicated by dashed lines),

prompting our algorithm to decide that the person is not playing violin.

The goal of our work is to use structured visual features

to recognize scenes in which a person is interacting with a

specific object in a specific manner, such as playing musical

instruments. Humans can recognize such activities based on

only static images, most likely due to the rich structured in-

formation in the activities. For example, “playing violin” is

defined not only by the appearance of a human and a vio-

lin and their co-occurrence, but also by the gesture of arms

interacting with the pose of the violin, as shown in Fig.1.

One intuitive approach for this problem is to design an

algorithm that can recognize the human pose, the target ob-

ject, and the spatial relationship between the human and

the object [27]. It is, however, an exceedingly difficult task

to recognize complex human gestures. Most of the human

pose estimation algorithms today cannot reliably parse out

body parts that are crucial to our task, especially with par-

tial occlusions or in cluttered backgrounds [23]. The same

is also true for object detection. Detection rates of generic

objects in realistic scenes are still low [5].

In this paper, instead of exploring models for pose es-

timation or object detection, we approach the problem by

discovering image features that can characterize well differ-
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ent human-object interactions. We take the view in [17] that

such human-object configurations are like different types of

scenes. So similar to scene and object classification [9, 18],

our features need to discover different classes of activities

that carry intrinsically different visual appearance and spa-

tial information. This problem offers us an opportunity to

explore the following issues that have not been widely stud-

ied in generic object recognition tasks:

∙ Spatial relations among image patches. Recognizing that

a person is playing violin is not simply discovering the

co-occurrence of the violin and the human, which could

also occur when a person just standing next to a violin.

Our features need to capture the spatial relations that are

crucial to define the human-object interactions.

∙ More subtle and discriminative features. Most of the cur-

rent image features (and models) are tested on classes of

objects that are very different from each other (e.g. bicy-

cles vs. cows). The classes of human-object interactions

are much more similar, due to the dominant presence of

humans in all classes. This demands more discriminative

features to encode the image differences.

Focusing on the above issues, we propose a new image

representation that encodes appearance, shape, and spatial

relations of multiple image patches, termed “grouplet”. The

grouplets are discovered through a novel data mining ap-

proach, and could be further refined by a parameter estima-

tion procedure. We show that the methods using grouplets

outperform the state-of-the-art approaches in both human-

object interaction classification and detection tasks.

The rest of this paper first presents a human-object inter-

action data set in Sec.2. Sec.3 and Sec.4 define the grouplets

and introduce a method of obtaining discriminative grou-

plets respectively. Sec.5 briefly describes the classification

methods that use grouplets. Related work is discussed in

Sec.6. Experiment results are reported in Sec.7.

2. The PPMI Dataset
Most of the popular image data sets are collected for rec-

ognizing generic objects [6, 5] or natural scenes [21] instead

of human and object interactions. We therefore collected

a new data set called People-playing-musical-instruments

(PPMI, Fig.2). PPMI1 consists of 7 different musical instru-

ments: bassoon, erhu, flute, French horn, guitar, saxophone,

and violin. Each class includes ∼150 PPMI+ images (hu-

mans playing instruments) and ∼150 PPMI- images (hu-

mans holding the instruments without playing). As Fig.2

shows, images in PPMI are highly diverse and cluttered.

We focus on two problems on this data. One is to classify

different activities of humans playing instruments; the other

is to distinguish PPMI+ and PPMI- images for each instru-

1Resources of the images include image search engines Google, Yahoo,

Baidu, and Bing, and photo hosting websites Flickr and Picassa.
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Figure 2. Example images of the PPMI dataset. For each instrument, we

show 3 images of people playing instruments (PPMI+) and 3 images of

people co-occurring with but not playing the instruments (PPMI-).

ment. The latter task is very different from traditional image

classification tasks. Distinguishing PPMI+ and PPMI- im-

ages of the same instrument strongly depends on the struc-

tural information in the images, such as the spatial relations

between the object and the human. This property of our data

set cannot be captured by [12] and [13], which are possibly

the only existing data sets of human-object interactions. Be-

sides classification, we also show results of detecting people

playing different instruments on the PPMI dataset.

3. Image Building Block - the Grouplet
For recognizing human-object interactions, we discover

a set of discriminative features that encode the structured

image information. To address the two central issues intro-

duced in Sec.1, the grouplets have the following properties.

∙ Each grouplet contains a set of highly related image

patches. It encodes the appearance, location, and shape

of these patches, as well as their spatial relationship.

∙ For differentiating human and object interactions, we ap-

ply a novel data mining approach to discover a large

number of discriminative grouplets.

A grouplet is defined by an AND/OR [4] structure on a

set of feature units. A feature unit, denoted by {𝐴, 𝑥,𝝈},

indicates that a codeword of visual appearance 𝐴 is ob-

served in the neighborhood of location 𝑥 (relative to a ref-

erence point). The spatial extent of 𝐴 in the neighborhood
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Figure 3. Two examples of grouplets: left is a size 2 grouplet; and right is

a size 3 grouplet. Each grouplet lives in an image space where 𝑃 indicates

a reference location. Each grouplet is composed of a set of feature units. A

feature unit, whose visual appearance is denoted by a shaded square patch,

can shift around in a local neighborhood (indicated by smaller rectangu-

lar boxes). An ellipse surrounding the center of a feature unit indicates

the spatial extent of the feature. Within the neighborhood, an OR oper-

ation is applied to select the feature unit that has the strongest signal (𝑣,

see Sec.4.1), indicated by the ellipse of thicker lines. An AND operation

collects all feature units to form the grouplet.

of 𝑥 is expressed as a 2D Gaussian distribution 𝒩 (𝑥,𝝈).

Fig.3 illustrates two grouplet features. Each ellipse de-

notes one feature unit. A grouplet is formed by applying

some OR operations and an AND operation to a set of fea-

ture units. Each OR operation is applied to the feature units

that have similar visual appearance and spatial extents, from

which the one that has the strongest signal in the image is

selected (thicker ellipses in Fig.3). The AND operation is

applied to these selected feature units. The size of a grouplet
is the number of OR operations it contains.

In the grouplet representation, each feature unit captures

a specific appearance, location, and spatial extent informa-

tion of an image patch. Together, the AND operation allows

the grouplets to represent various interactions among a set

of image patches, and the OR operation makes the grouplets

resistent to small spatial variations. By definition, we do

not exert any constraint on the appearance or location of the

feature units, nor the size of the grouplets. Furthermore, the

spatial extent of each feature unit will be automatically re-

fined through a parameter estimation step (Sec.4.2.2), thus

the grouplets can reflect any structured information among

any number of image patches with any appearance. Exam-

ples of grouplets are shown in Fig.1 and Fig.10.

Implementation Details: In the grouplet representation,

SIFT descriptors [19] are computed over a dense image grid

of 𝐷 rectangular patches, as in [18]. Using k-means cluster-

ing, we obtain a SIFT codebook which contains 250 code-

words. Therefore, the visual appearance can be represented

by {𝐴𝑤}𝑊𝑤=1, where 𝑊=250. The feature units in one OR

operation should have the same visual codeword. Reference

points are chosen as the centers of the human faces.

4. Obtaining Discriminative Grouplets

To recognize subtly different scenes, we would like to

find a rich set of grouplets that are not only highly char-

Map 1 Map 2 Map W

2
σ

1
σ

�

W
σ

�

�

Figure 4. Computing the signals 𝑣 of all feature units on an image ℐ. First,

a codeword assignment map is obtained for each codeword 𝐴𝑤 . In Map

𝑤, a region is marked black if it is assigned to 𝐴𝑤 . Then, each Map 𝑤
is convolved with a 2D Gaussian distribution with covariance 𝝈𝑤 . Finally

the results are concatenated into a (𝐷×𝑊 )-dimensional vector of signal

values, where each entry is the signal value of a feature unit on the image.

acteristic of the image class, but also highly discriminative

compared to other classes. We propose a novel data mining

algorithm for discovering discriminative grouplets.

4.1. Defining Discriminative Grouplets

Grouplet Λ is discriminative for class 𝑐 means that Λ has
strong signals on images of class 𝑐, and has weak signals
on images of other classes. In the rest of this section, we

first describe how to compute the signal values of feature

units and grouplets, and then elaborate on the definition of

discriminative grouplets.

The signal 𝑣 of a feature unit {𝐴, 𝑥,𝝈} on an image ℐ is

the likelihood that {𝐴, 𝑥,𝝈} is observed in ℐ:

𝑣 =
∑

𝑥′∈Ω(𝑥)

[
𝑝(𝐴∣𝑎′) ⋅ 𝒩 (𝑥′∣𝑥,𝝈)

]
(1)

where Ω(𝑥) is the image neighborhood of location 𝑥, 𝑎′

is the appearance of the image patch at 𝑥′, 𝑝(𝐴∣𝑎′) is the

probability that 𝑎′ is assigned to codeword 𝐴. Please refer

to Fig.4 and implementation details of this section for more

details. For a codeword 𝐴𝑤, we use a single variance 𝝈𝑤 to

encode its spatial distribution in all positions of the image.

Given the signal values of the feature units in a grou-

plet, each OR operation selects a feature unit that has the

strongest signal (see Fig.3). The overall signal of the grou-

plet, i.e. result of the AND operation, is the smallest signal

value of the selected feature units. Intuitively, this decision

ensures that even the relatively weakest feature unit needs to

be strong enough for the grouplet to be strong (see Fig.5).

In order to evaluate the discriminability of a grouplet, we

introduce two terms, support value, 𝑆𝑢𝑝𝑝(⋅) and confidence
value, 𝐶𝑜𝑛𝑓(⋅). A grouplet Λ is discriminative for a class

𝑐 if both 𝑆𝑢𝑝𝑝(Λ, 𝑐) and 𝐶𝑜𝑛𝑓(Λ, 𝑐) are large. Given a set

of training images where the signal of Λ on image ℐ𝑖 is de-

noted as 𝑟𝑖, 𝑆𝑢𝑝𝑝(Λ, 𝑐) and 𝐶𝑜𝑛𝑓(Λ, 𝑐) are computed by

𝑆𝑢𝑝𝑝(Λ, 𝑐)=

∑
𝑐𝑖=𝑐 𝑟𝑖∑
𝑐𝑖=𝑐 1

, 𝐶𝑜𝑛𝑓(Λ, 𝑐)=
𝑆𝑢𝑝𝑝(Λ, 𝑐)

max
𝑐′ ∕=𝑐

𝑆𝑢𝑝𝑝(Λ, 𝑐′)
(2)



Figure 5. Example grouplets whose feature units are of different signal

value strengths. One grouplet is presented in each image, where the el-

lipses indicate the location and spatial extent of the feature units. Thicker

lines indicate stronger signal values. For the same flute-playing activity, it

is intuitive to see that the grouplet on the left has overall stronger feature

units than the mixed one in the middle and the weaker one on the right.

where 𝑐𝑖 is the class label of ℐ𝑖. Intuitively, a large

𝑆𝑢𝑝𝑝(Λ, 𝑐) indicates that Λ generally has strong signals on

images of class 𝑐, and a large 𝐶𝑜𝑛𝑓(Λ, 𝑐) implies relatively

weak signals of Λ on images of classes other than 𝑐.
Implementation Details: The size of Ω(𝑥) is 5×5

patches. We assign each image patch to its nearest code-

word: 𝑝(𝐴∣𝑎)=1 if and only if 𝐴 is 𝑎’s nearest codeword.

We initialize 𝝈𝑤 to [0.6, 0; 0, 0.6] for any 𝐴𝑤. 𝝈𝑤 will be

updated in the parameter estimation step (Sec.4.2.2).

4.2. A Novel Iterative Mining Algorithm

For each class, our goal is to find all the grouplets of

large support and confidence values. One way is to evaluate

these values on all possible grouplets. Assuming an image

of 𝐷 patches and a codeword vocabulary of size 𝑊 , there

are 𝐷×𝑊 possible feature units. The total number of grou-

plets is therefore 𝑂(2𝐷×𝑊 ) (in this paper 𝐷×𝑊=240250).

Clearly, evaluating 𝑆𝑢𝑝𝑝(⋅) and 𝐶𝑜𝑛𝑓(⋅) of all the grouplets

for each class is computationally infeasible.

We therefore develop a data mining algorithm for this

task, which discriminatively explores the AND/OR struc-

ture of the grouplets in an Apriori mining [1] process.

Furthermore, we introduce a novel parameter estimation

method to better estimate the spatial distribution 𝝈𝑤 of each

codeword 𝐴𝑤 as well as to obtain a set of weights for the

grouplets of each class. Our mining algorithm then iterates

between the mining process and the parameter estimation

process. An overview of the algorithm is shown in Algo-

rithm 1, where 𝑙-grouplets indicate the grouplets of size 𝑙.
We briefly describe the mining and the parameter estimation

method in the rest of this section.

4.2.1. The Modified Apriori Mining Algorithm In each

iteration of Algorithm 1, given the spatial distribution 𝝈𝑤

of each codeword 𝐴𝑤, we compute the signal values of all

the feature units on each image as in Fig.4. We are then

ready to mine the discriminative grouplets for every class.

We modify the Apriori [1] mining method to explore the

AND/OR structures to select the discriminative grouplets.

The main idea of Apriori mining is compatible with the

AND operation: if an 𝑙-grouplet has a large support value,

then by removing the feature units in any of its OR opera-

foreach Iteration do
∙ Compute signals of all feature units on each image;

foreach Class do
★ Obtain the feature units whose 𝑆𝑢𝑝𝑝(⋅) > 𝑇𝑆𝑢𝑝𝑝;

★ Generate 1-grouplets; Set 𝑙 = 2;

while The number of (𝑙 − 1)-grouplets ⩾ 2 do
Generate candidate 𝑙-grouplets; Remove 𝑙-
grouplets whose 𝑆𝑢𝑝𝑝(⋅) < 𝑇𝑆𝑢𝑝𝑝; 𝑙 = 𝑙 + 1;

end
★ Remove the grouplets whose 𝐶𝑜𝑛𝑓(⋅) < 𝑇𝐶𝑜𝑛𝑓 .

end
∙ Parameter estimation to refine 𝝈𝑤 for each 𝐴𝑤 and

obtain a weight for each mined grouplet.

end
Algorithm 1: Obtaining discriminative grouplets.

tions, the remaining (𝑙−1)-grouplets also have large support

values. Therefore, we can generate 𝑙-grouplets based only

on the mined (𝑙−1)-grouplets, instead of considering all

the possibilities. The OR operation is used to obtain the 1-

grouplets. For each codeword, a hierarchical clustering is

applied to the feature units that have large enough support

values. Each cluster is then initialized as a 1-grouplet. The

mining process is briefly shown in Algorithm 1.

Implementation Details: The hierarchical clustering is

based on the maximum distance metric, of which the thresh-

old is two times the patch size. The mining algorithm au-

tomatically adjusts the values of 𝑇𝑆𝑢𝑝𝑝 and 𝑇𝐶𝑜𝑛𝑓 for each

class, so that the number of mined grouplets for different

classes are approximately the same. More details of the

mining method can be found in Sec.A of this paper.

4.2.2. Refining Grouplets Given a set of mined grouplets,

we introduce a parameter estimation method to further re-

fine the spatial distribution 𝝈𝑤 of each codeword 𝐴𝑤. With

the refined 𝝈, one can expect that more accurate signal val-

ues of the feature units can be computed, which in turn can

be put into the mining process to obtain better grouplets in

the next iteration. Furthermore, the algorithm computes a

weight on each mined grouplet for each class. The com-

bination of grouplets and the class-dependent weights can

then be directly used for classification tasks (see Sec.5).

Given an image ℐ with class label 𝑐, we compute the

likelihood of ℐ given a set of parameters 𝜽, where 𝜽 con-

tains the parameters for the spatial extent of each codeword

and the importance of each grouplet.

𝑝(ℐ, 𝑐∣𝜽) = 𝑝(𝑐∣𝜽)
∑
𝑚

[
𝑝(ℐ∣Λ𝑚,𝜽)𝑝(Λ𝑚∣𝑐,𝜽)] (3)

where Λ𝑚 indicates the 𝑚-th mined grouplet. 𝑝(ℐ∣Λ𝑚,𝜽)
denotes the likelihood of ℐ given Λ𝑚. 𝑝(Λ𝑚∣𝑐,𝜽) models

the importance of Λ𝑚 for class 𝑐. We use an expectation-

maximization (EM) algorithm to estimate the parameters

𝜽. Due to space limitation, we elaborate the details of



the parameter estimation method in Sec.B. On a PC with

a 2.66GHz CPU, our algorithm can process around 20000

grouplets under 3 minutes per EM iteration.

5. Using Grouplets for Classification
Having obtained the discriminative grouplets, we are

ready to use them for classification tasks. In this paper, we

show that grouplets can be used for classification either by

a generative or a discriminative classifier.

A Generative Classifier. Recall that in Sec.4.2.2, our

probabilistic parameter estimation process outputs the im-

portance of each grouplet for each class. This can, there-

fore, be directly used for classification. Given a new image

ℐ, its class label 𝑐 is predicted as follows,

𝑐 = argmax
𝑐′

𝑝(𝑐′∣ℐ,𝜽) = argmax
𝑐′

𝑝(𝑐′, ℐ∣𝜽) (4)

A Discriminative Classifier. Discriminative classifiers

such as SVM can be applied by using groupets. Given an

image, the input feature vector to SVM classifiers is the sig-

nal values of the mined grouplets.

6. Related Work
Many features have been proposed for various vision

tasks in the past decade [26]. It is out of the scope of this

paper to discuss all of them. Instead, we discuss the image

representations that have directly influenced our work.

One of the most popular image feature representa-

tion schemes is bag of words (BoW) and its derivations

(e.g. [18]). These methods have shown promising results

in holistic image classification tasks. But by assuming lit-

tle or no spatial relationships among image patches, these

representations are not sufficient for more demanding tasks

such as differentiating human and object interactions.

In order to remedy BoW, some methods have been pro-

posed to either encode longer range image statistics [25,

24] or explicitly model spatial relationships among image

patches [9, 7, 20]. But most of such approaches uncover

image features in a generative way, which might result in

some features that are not essential for recognition. In [8], a

deformable part model is presented for discriminatively de-

tecting objects in cluttered scenes. This method, however,

assumes that the target object consists of a small number

of deformable parts, which might not be able to model the

subtle difference between similar image categories.

Our feature is similar in spirit to [3], though indepen-

dently developed. We differ from [3] in that our features

are automatically discovered instead of supervised by hu-

mans, making it a more scalable and convenient algorithm.

Furthermore, we emphasize the dependence among image

features, which is critical for demanding recognition tasks

such as human and object interactions.

There has been a lot of work on discriminative feature

selection [14, 16]. But most of the methods are not able to

manage such a huge number of features (2 to the power of

millions) as in the grouplets. Our algorithm is inspired by

previous works [22, 29, 28] that also use data mining meth-

ods for feature selection. But compared to these previous

methods, we take a step further to encode much more struc-

tured information in the feature representation.

7. Experiment
We first conduct experiments to analyze the properties

of grouplets (Sec.7.1). The rest of this section then focuses

on comparing using grouplets for human-object interaction

classification and detection with a number of existing state-

of-the-art methods. Apart from Sec.7.5, all experiments use

the PPMI dataset introduced in Sec.2. In Sec.7.4 we use the

original PPMI images. Data sets that are used from Sec.7.1

to 7.3 are obtained as follows. We first run a face detec-

tor [14] on all PPMI images. For each instrument, we man-

ually select 200 detection results from PPMI+ and PPMI-

images respectively. We then crop a rectangle region of the

upper body of each selected detection result and normalize

the region to 256×256 pixels so that the face size is 32×32.

7.1. Analysis of the Properties of the Grouplets

Effects of the grouplet size We use a 7-class classifica-

tion task to analyze the properties of the mined grouplets

(experiment details in Sec.7.2). Here we use an SVM with

the histogram intersection kernel for classification.

Fig.6(left) shows the average distribution of different

sizes of grouplets. Because the AND operation takes the

smallest signal value of all feature units, it is unlikely that

grouplets with a very large size can be mined. We observe

that a majority of the mined grouplets contain 1, 2, or 3 fea-

ture units. Fig.6(right) shows the classification performance

as the size of the grouplets increases. We see a big increase

in accuracy using grouplets from size 1 to size 3. After

this, the accuracy stabilizes even when including grouplets

of bigger sizes. Two reasons might account for this obser-

vation: 1) the number of grouplets containing more than 3
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Figure 6. left: Average distribution of grouplets containing different num-

ber of feature units in the PPMI images. Error bars indicate the standard

deviation to the mean among 7 activities. right: 7-class classification ac-

curacy with respect to the number of feature units in included grouplets.
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Figure 7. left: Classification accuracy with respect to the number of iter-

ations (outer loop of Alg.1) of grouplet mining and parameter estimation.

right: Spatial extent of grouplets mined in the 1st, 2nd, and 3rd iteration.

feature units is small, and hence the overall contribution to

classification is small; 2) much information in such grou-

plets is already contained in the grouplets of smaller sizes.

Effect of the Iterative Learning Procedure Given a set

of training images, our algorithm iterates between a min-

ing and a parameter estimation step. The idea is that each

iteration offers a better refinement of the grouplet parame-

ters (e.g. spatial extent of codeword), hence of the overall

dscriminability. Fig.7(left) shows that the classification ac-

curacy increases with respect to the iteration number. We

observe the biggest gain between the first and the second it-

eration, indicating that with only two iterations, the method

can obtain a good estimation of the spatial extent of each

grouplet. Fig.7(right) shows that the estimation of the spa-

tial extent of the grouplets align better with the visual fea-

tures as the iteration increases, resulting in better grouplets.

7.2. Classification of Playing Different Instruments

Here we use our algorithm (grouplet+SVM and grou-

plet+Model, Sec.5) to classify images of people playing

seven different musical instruments. For each class, 100

normalized PPMI+ images are randomly selected for train-

ing and the remaining 100 images for testing. We use

three iterations of the iterative learning framework to mine

around 2000 grouplets for each class. Fig.8(left) shows the

confusion table obtained by grouplet+SVM with the his-

togram intersection kernel. We observe that the histogram

intersection kernel performs better than the other kernels.

We compare our method with some other approaches.

The results are shown in Fig.8(right). Both BoW and

SPM [18] use the histogram representation, where BoW

does not consider spatial information in image features

while SPM accounts for some level of coarse spatial in-

formation by building histograms in different regions of

the image. The BoW representation is followed by an

SVM classifier with the histogram intersection kernel. Both

DPM [8] and the constellation model [9] are part-based

models, where DPM trains the classifier discriminatively

and constellation model adopts a generative way.

We observe that our grouplet+SVM outperforms the

other methods by a large margin. This suggests the ef-

fectiveness of the structural information in the mined grou-
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Figure 8. 7-class classification using the normalized PPMI+ images. left:
Confusion matrix obtained by grouplet+SVM. The classification accuracy

is 65.7%, whereas chance is 14%. right: Classification results of differ-

ent methods: our grouplet+SVM, our grouplet+Model, a four-level spa-

tial pyramid matching (SPM) [18], the deformable part model (DPM) [8],

the constellation model [9], and bag-of-words (BoW). Y-axis indicates the

classification accuracy of each method on the 7 classes.

plets. Furthermore, the method that combines grouplet with

a generative model achieves comparable performance with

SPM. This demonstrates that (1) the discriminatively mined

grouplets carry the information that can distinguish images

of different classes; (2) our parameter estimation step can

effectively learn the weights of each mined grouplet.

7.3. Discriminating Playing from Not Playing

Our algorithm aims to learn discriminative structured in-

formation of human-object interactions. To demonstrate

this, we conduct a classification experiment on PPMI+ vs.

PPMI- datasets. For each instrument, we perform a binary

classification task: whether the picture contains a person

playing the instrument or a person not playing the instru-

ment. Note that all images contain person(s) and instru-

ment(s). The distinction between PPMI+ and PPMI- is only

the way the person is interacting with the instrument.

We have 7 binary classification problems. In each prob-

lem, 100 normalized PPMI+ and 100 PPMI- images are

randomly selected for training, and the other 200 images

are used for testing. We mine around 4000 grouplets for

both PPMI+ and PPMI- images of each instrument. In Ta-

ble 1, our method is compared with the other approaches

described in Sec.7.2. Due to space limitation, results of the

constellation model, which performs on par with BoW, are

Instruments
SPM DPM

BoW
Grouplet Grouplet

[18] [8] +Model +SVM

bassoon 71.5% 68.5% 64.5% 75.0% 78.0%
erhu 78.0% 75.5% 77.5% 78.5% 78.5%
flute 84.5% 79.0% 78.0% 85.0% 90.5%

French horn 78.5% 75.5% 71.5% 77.0% 80.5%
guitar 79.5% 81.0% 68.0% 73.0% 75.5%

saxophone 76.0% 76.5% 73.0% 75.0% 78.5%
violin 78.5% 75.5% 74.0% 83.5% 85.0%

Table 1. Classification results of PPMI+ (playing instrument) vs. PPMI-

(co-occurring but not playing the instrument).



not listed in Table 1. We can see that our method outper-

forms the other methods on almost all the classes, especially

on bassoon, flute, and violin, where our approach improves

the accuracy by almost 10%. The only exception is gui-

tar, where DPM achieves the best performance. The reason

is that in the normalized images of people playing guitar,

the guitar always occupies a big region at the left-bottom

part of the image (Fig.10). Therefore it is not difficult for

the part-based methods (DPM, SPM) to localize the guitar

in each image. Fig.10(e) shows some PPMI- images with

the grouplets that are mined for the corresponding PPMI+

images of the same instrument. Compared with Fig.10(d),

much fewer grouplets are observed on PPMI- images.

7.4. Detecting Human and Object Interactions

Here, we test our approach’s ability to detect activities

in cluttered scenes. We use the original PPMI images as

shown in Fig.2. In this experiment, 80 PPMI+ and 80

PPMI- randomly selected images of each instrument are

used for training, and the remaining images for testing.

We first run a face detector on all images. We set a

relatively low detection threshold to guarantee that almost

all human faces are detected. Fig.9 shows that many false

alarms occur after this step, at positions where no face is

present or on a person who is not playing an instrument.

Given each face detection, we crop out the neighboring re-

gion. Based on these regions, we mine the grouplets that

are discriminative for detecting people playing each instru-

ment. Then, an 8-class SVM classifier is trained to deter-

mine whether this detection contains a person playing one

of the 7 instruments or not. This is a very challenging task

(see Fig.9). The preliminary experiment result shows that,

measured with area under the precision-recall curve, our

algorithm significantly outperforms the SPM method [18]:

we obtain a 45.7% performance, while SPM is 37.3%. We

show examples of both successes and failures of our algo-

rithm and SPM in Fig.9, from which we can see that SPM

produces more false alarms than our method.

7.5. Result on Other Dataset - Caltech 101

Not only grouplets can be used for recognizing human-

object interactions, but it is also a general framework to

mine structured visual features in images. Therefore we

also test our algorithm in an object recognition task using

Caltech101 [6], in the same setting as in [11]. Table 2 com-

pares our results with some previous methods. Other than

the method in [10], our model performs on par with most

of the state-of-the-art algorithms. It is important to note

that this experiment is carried out without any additional

tuning of the algorithm designed for activity classification.

To accommodate objects that are not characterized by spe-

cific spatial structures (e.g. articulated animals), some de-

sign modifications should be applied to mine the grouplets.
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Figure 9. Examples of detection results by (left) our method and (right)
SPM. Cyan and magenta rectangles denote the detection results and false

alarms respectively. Bounding boxes in (left) are drawn by including all

the grouplets that have large signals on the image region. Yellow rectangles

show the face detection results which are classified as background.

Method [2] [11] [30] [10] Grouplet+SVM

Accuracy 48% 59% 65% 77% 62%

Table 2. Recognition results on Caltech 101. The performance is mea-

sured by the average accuracy of the 101 classes.

8. Conclusion
In this work, we proposed a grouplet feature for rec-

ognizing human-object interactions. Grouplets encode de-

tailed and structured information in the image data. A data

mining method incorporated with a parameter estimation

step is applied to mine the discriminative grouplets. One

future research direction would be to link the mined grou-

plets with semantic meanings in the images to obtain deeper

understanding of the scenes of human-object interactions.
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A. Iterative Apriori Mining
In this section, we describe some implementation details

of the iterative Apriori mining method that are not covered

in detail in Sec.4.2.

A.1. Generating Candidate 𝒍-Grouplets

In Algorithm 1, we need to generate candidate 𝑙-
grouplets based on the mined (𝑙−1)-grouplets. We use the

same method as that in [1], which contains two steps: the

join step and the prune step. In the join step, we find all the

pairs of mined (𝑙−1)-grouplets that have (𝑙−2) overlapping

feature units. Then each pair will be merged to form a can-

didate 𝑙-grouplet. In the prune step, a candidate 𝑙-grouplet

will be deleted if any of its (𝑙−1)-subsets is not in the mined

(𝑙−1)-grouplets.

Example We use integer variables to denote feature units,

and let the mined 2-grouplets be {{1 2}, {1 3}, {2 3}, {3

5}}. After the join step, the set of candidate 3-grouplets

will be {{1 2 3}, {1 3 5}, {2 3 5}}. The prune step will

delete {1 3 5} because one of its subset {1 5} is not in the

mined 2-grouplets. {2 3 5} will also be deleted because {2

5} is not in the mined 2-grouplets. Then the final candidate

3-grouplet will be only {1 2 3}.

A.2. Adjusting Thresholds 𝑻𝑺𝒖𝒑𝒑 and 𝑻𝑪𝒐𝒏𝒇

The number of mined grouplets depends on the threshold

values 𝑇𝑆𝑢𝑝𝑝 and 𝑇𝐶𝑜𝑛𝑓 . It also depends on the images of

different classes. If the visual appearance of the images in

one class is more consistent than that in other classes, then

even with large 𝑇𝑆𝑢𝑝𝑝 and 𝑇𝐶𝑜𝑛𝑓 values, many grouplets

might be mined for this class. In order to achieve good clas-

sification performance, we hope that the number of mined

grouplets for all the classes can be approximately the same.

This is achieved by using class-dependent threshold values.

For each class, we set the expected number of grouplets

and the initial threshold values 𝑇𝑆𝑢𝑝𝑝 and 𝑇𝐶𝑜𝑛𝑓 . If we ob-

tain more grouplets than the expectation, then increase the

values of 𝑇𝑆𝑢𝑝𝑝 and 𝑇𝐶𝑜𝑛𝑓 , otherwise decrease them. We

repeat the above step until approximately the same number

of grouplets as the expectation are mined. In this paper the

initial thresholds are 𝑇𝑆𝑢𝑝𝑝 = 0.005, 𝑇𝐶𝑜𝑛𝑓 = 1.75.

B. Parameter Estimation for Grouplets
B.1. Model Equation

From the mining step, we have obtained a set of grou-

plets {Λ1, ⋅ ⋅ ⋅ ,Λ𝑀}. The objective of parameter estimation

is to update the spatial extent of the feature units, and learn

a class-dependent weight for each mined grouplet. The two

goals are achieved by jointly training the grouplets mined

for all the classes. Given an image ℐ with a class label 𝑐, we

compute the likelihood of ℐ given the parameters 𝜽, where

𝜽 contains the class-dependent weight 𝝅 of each grouplet

and the covariance parameter 𝝈 that governs the spatial ex-

tent of each feature unit in each grouplet:

𝑝(ℐ, 𝑐∣𝜽) = 𝑝(𝑐∣𝜽)𝑝(ℐ∣𝑐,𝜽)

= 𝑝(𝑐∣𝜽)
𝑀∑

𝑚=1

𝑝(ℐ,Λ𝑚∣𝑐,𝜽) (5)

=
1

𝐶

𝑀∑
𝑚=1

[
𝑝(ℐ∣Λ𝑚,𝝈)𝑝(Λ𝑚∣𝑐,𝝅)]

We assume that the classes are uniformly distributed,

and hence 𝑝(𝑐∣𝜽) = 1
𝐶 in Eq.5, where 𝐶 is the number

of classes.

𝑝(ℐ∣Λ𝑚,𝝈) denotes the likelihood of ℐ given Λ𝑚. We

assume that 𝑝(ℐ∣Λ𝑚,𝝈) ∝ 𝑝(Λ𝑚∣ℐ,𝝈), and use the signal

value of Λ𝑚 on ℐ to approximately describe 𝑝(ℐ∣Λ𝑚,𝝈).
Furthermore, we approximate Eq.1 by

𝑣 ≈ 𝑝(𝐴∣𝑎ℎ) ⋅ 𝒩 (𝑥ℎ∣𝑥,𝝈) (6)

where {𝑎ℎ, 𝑥ℎ} = argmax𝑎′,𝑥′ 𝑝(𝐴∣𝑎′) ⋅𝒩 (𝑥′∣𝑥,𝝈). With

this approximation, we can avoid computing marginaliza-

tion within the “ln” operation in model learning.

𝑝(Λ𝑚∣𝑐,𝝅) models the importance of Λ𝑚 for class 𝑐. It

is expressed as a multinomial distribution,

𝑝(Λ𝑚∣𝑐,𝜽) =
𝐶∏

𝑐′=1

Mult(Λ𝑚∣𝝅:,𝑐′)
𝛿(𝑐,𝑐′)

=
𝐶∏

𝑐′=1

(𝝅𝑚,𝑐′)
𝛿(𝑐,𝑐′) (7)

where 𝛿(𝑐, 𝑐′) equals 1 if 𝑐 = 𝑐′ and otherwise 0. From Eq.7

we can see that 𝝅 is a 𝑀 × 𝐶 matrix.

B.2. Learning

We use an EM approach to estimate the model parame-

ters 𝜽 = {𝝅,𝝈}, which is as follows,

1. Choose an initial setting for the parameters 𝜽old.

2. E step Evaluate 𝑝(Λ𝑚∣ℐ, 𝑐,𝜽old) for each {ℐ, 𝑐} and

𝑚 = 1, ⋅ ⋅ ⋅ ,𝑀 .

3. M step Evaluate 𝜽new by 𝜽new = argmax
𝜽

𝒬(𝜽,𝜽old),

where

𝒬(𝜽,𝜽old)

=
∑
ℐ,𝑐

𝑀∑
𝑚=1

[
𝑝(Λ𝑚∣ℐ, 𝑐,𝜽old) ln 𝑝(ℐ, 𝑐,Λ𝑚∣𝜽)] .

4. Check for convergence of the parameter values. If the

convergence criterion is not satisfied, then let 𝜽old ←
𝜽new and return to step 2.



B.2.1 E Step

The E step estimates the likelihood of Λ𝑚 given an image

{ℐ, 𝑐} and the model parameters 𝜽old. It is computed by

𝑝(Λ𝑚∣ℐ, 𝑐,𝜽old) =
𝑝(Λ𝑚, ℐ, 𝑐∣𝜽old)

𝑝(ℐ, 𝑐∣𝜽old)
(8)

=
𝑝(𝑐)𝑝(Λ𝑚∣𝑐,𝝅old)𝑝(ℐ∣Λ𝑚,𝝈old)∑𝑀
𝑙=1[𝑝(𝑐)𝑝(Λ

𝑙∣𝑐,𝝅old)𝑝(ℐ∣Λ𝑙,𝝈old)]

B.2.2 M Step - Evaluation of 𝝅

When updating 𝝅, we must take account to the constraint of

multinomial distribution parameters:

𝑀∑
𝑙=1

𝝅𝑙,𝑘 = 1, ∀𝑘 = 1, ⋅ ⋅ ⋅ , 𝐶 (9)

We introduce a Lagrange multiplier 𝜆𝑘 for each 𝝅:,𝑘. Fur-

thermore we use a regularization parameter 𝛽 to guaran-

tee that the grouplets are almost equally distributed in the

set of multinomial distributions, so as to avoid the situation

that the learned group weights bias to some specific classes.

Then 𝝅𝑚,𝑘 is estimated according to,

∂

∂𝝅𝑚,𝑘

[
𝒬(𝜽,𝜽old)− 𝛽

𝑀∑
𝑙=1

(
𝐶∑

𝑐′=1

𝝅𝑙,𝑐′ − 𝐶

𝑀

)2

+ 𝜆𝑘

(
𝑀∑
𝑙=1

𝝅𝑙,𝑘 − 1

)]

=
∑
ℐ,𝑐

[
𝑝(Λ𝑚∣ℐ, 𝑐, 𝜽old) ⋅ ∂

∂𝝅𝑚,𝑘
ln 𝑝(Λ𝑚∣𝑐,𝜽)

]

− 2𝛽

(
𝐶∑

𝑐′=1

𝝅𝑚,𝑐′ − 𝐶

𝑀

)
+ 𝜆𝑘

=
∑

ℐ,𝑐=𝑘

[
1

𝝅𝑚,𝑘
𝑝(Λ𝑚∣ℐ, 𝑐, 𝜽old)

]
− 2𝛽

(
𝐶∑

𝑐′=1

𝝅𝑚,𝑐′ − 𝐶

𝑀

)
+ 𝜆𝑘

= 0 (10)

∴ 𝝅𝑚,𝑘 ≈

∑
ℐ,𝑐=𝑘

𝑝(Λ𝑚∣ℐ, 𝑐,𝜽old)

2𝛽
(∑𝐶

𝑐′=1 𝝅
old
𝑚,𝑐′ − 𝐶

𝑀

)
− 𝜆𝑘

(11)

where 𝜆𝑘 can be solved by considering the constraint

𝑀∑
𝑙=1

∑
ℐ,𝑐=𝑘

𝑝(Λ𝑙∣ℐ, 𝑐,𝜽old)

2𝛽
(∑𝐶

𝑐′=1 𝝅
old
𝑚,𝑐′ − 𝐶

𝑀

)
− 𝜆𝑘

= 1 (12)

Note that Eq.12 might have multiple solutions for 𝜆𝑘. But

we are only interested in the solution that satisfies the fol-

lowing constraint so that 𝝅𝑚,𝑐′ in Eq.11 is positive and can

be the parameter of a multinomial distribution.

∀𝑚, 𝜆𝑘 < 2𝛽

(
𝐶∑

𝑐′=1

𝝅old
𝑚,𝑐′ −

𝐶

𝑀

)
(13)

We prefer a large 𝛽 for better regularization ability. But if 𝛽
is too large, then Eq.13 cannot be well satisfied. In practice,

we start from 𝛽 = 10, 000, and reduce 𝛽 by half until a

valid 𝜆𝑘 is obtained.

B.2.3 M Step - Evaluation of 𝝈

As shown in Fig.4, for a codeword 𝐴𝑤 we learn the same

distribution 𝝈𝑤, no matter what feature unit 𝐴𝑤 belongs

to and where 𝐴𝑤 appears in the image. In the M-step we

estimate 𝝈𝑤 by

∂𝒬(𝜽,𝜽old)

∂𝝈𝑤
=

∂

∂𝝈𝑤

∑
ℐ,𝑐

𝑀∑
𝑙=1

[
𝑝(Λ𝑙∣ℐ, 𝑐,𝜽old) ln 𝑝(ℐ∣Λ𝑙,𝝈𝑤)

]

=
∑
ℐ,𝑐

𝑀∑
𝑙=1

[
𝑝(Λ𝑙∣ℐ, 𝑐,𝜽old)

⋅
∑

𝐴𝑤=𝐴𝑙,𝑗

∂ ln(𝑝(𝐴𝑙,𝑗 ∣𝑎ℎ𝑙,𝑗 ) ⋅ 𝒩 (𝑥ℎ𝑙,𝑗 ∣𝑥𝑙,𝑗 ,𝝈𝑤))

∂𝝈𝑤

]

= 0 (14)

where 𝐴𝑙,𝑗 and 𝑥𝑙,𝑗 denote the visual codeword and im-

age location of the 𝑗-th feature unit in the 𝑙-th grouplet re-

spectively. ℎ𝑙,𝑗 is an index variable as in Eq.6. Denoting

𝑥ℎ𝑙,𝑗 − 𝑥𝑙,𝑗 = 𝜒𝑙,𝑗 , we have

∑
ℐ,𝑐

𝑀∑
𝑙=1

{
𝑝(Λ𝑚∣ℐ, 𝑐,𝜽old) (15)

⋅
∑

𝐴𝑤=𝐴𝑙,𝑗

[
(𝝈𝑤)

−𝑇 − (𝝈𝑤)
−𝑇𝜒𝑙,𝑗𝜒

𝑇
𝑙,𝑗(𝝈𝑤)

−𝑇
]}

= 0

Therefore

𝝈𝑤 =

∑
ℐ,𝑐

𝑀∑
𝑙=1

[
𝑝(Λ𝑙∣ℐ, 𝑐,𝜽old) ⋅ ∑

𝐴𝑤=𝐴𝑙,𝑗

𝜒𝑙,𝑗𝜒
𝑇
𝑙,𝑗

]

∑
ℐ,𝑐

𝑀∑
𝑙=1

[
𝑝(Λ𝑙∣ℐ, 𝑐,𝜽old) ⋅ ∑

𝐴𝑤=𝐴𝑙,𝑗

1

] (16)


