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Ah ne'er so dire a Thirst of Glory boast, 
Nor in the Critick let the Man be lost! 
Good-Nature and Good-Sense must ever join; 
To err is Humane; to Forgive, Divine. 
 
(An Essay on Criticism, Alexander Pope, 1711) 
 
 
Abstract 
 
New multivariate methods for the analysis of functional magnetic resonance imaging (fMRI) 
data have enabled us to decode neural representations of visual information with unprecedented 
fidelity. But how do we know if humans make use of the information that we decode from the 
fMRI data for their behavioral response? In this chapter we propose a method for correlating the 
errors from fMRI decoding with the errors made by subjects in a behavioral task. High 
correlations suggest that subjects use information that is closely related to the content of the 
fMRI signal to make their behavioral response. We demonstrate the viability of this method 
using the example of natural scene categorization. Humans are extremely efficient at 
categorizing natural scenes (such as forests, highways, or beaches), despite the fact that different 
classes of natural scenes often share similar image statistics. Where and how does this happen in 
the brain? By applying multi-voxel pattern analysis to fMRI data recorded while subjects viewed 
natural scenes we found that the primary visual cortex (V1), the parahippocampal place area 
(PPA), retrosplenial cortex (RSC), and the lateral occipital complex (LOC) all contain 
information that distinguishes among natural scene categories. Correlation of the decoding errors 
with errors made by the subjects in a behavioral experiment revealed that only the information 
about scene categories contained in the PPA, RSC, and LOC is directly related to behavior, but 
not the information in area V1. A match between behavioral performance and accuracy of 
decoding scene categories from the PPA and RSC for two manipulations of the stimuli (scene 
inversion and quality of category exemplar) underscores the central role of these two areas in 
natural scene categorization. 
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1. Introduction 
 
Vision science has made tremendous progress in understanding how the brain processes various 
components of our visual world. Part of this progress is owed to the advent of functional 
magnetic resonance imaging (fMRI), a non-invasive neuroimaging method that can image 
activity in the whole brain. Indeed, fMRI has enabled the mapping of several important visual 
areas in the human brain, for instance, retinotopic visual cortex including primary visual cortex 
and extrastriate regions (Engel et al., 1994), the lateral occipital cortex for object perception 
(Malach et al., 1995), the fusiform face area (Kanwisher et al., 1997), and the parahippocampal 
place area (Epstein and Kanwisher, 1998). In these seminal studies univariate statistics was 
employed (i.e. each voxel was analyzed independently) to produce maps of functional activity. 
However, our understanding of stimulus representations in the brain has greatly expanded with 
the application of multi-voxel pattern recognition techniques to fMRI data.  It has now been 
shown, for example, that the neural representation of a much larger range of stimuli can be 
decoded if one considers the pattern of activity across voxels in response to visually presented 
objects, leveraging the distributed nature object representations in the human brain (Haxby et al., 
2001). This discovery has spurred a surge of studies applying multi-voxel pattern analysis 
(MVPA) techniques to many questions in visual neuroscience and beyond. 
 
In this chapter we aim to demonstrate the importance of tying MVPA to behavioral data using 
the example of a challenging high-level visual recognition task: natural scene perception. 
Throughout our lives we are exposed to a large number of different scenes, indoors and outdoors, 
human-made and natural, from different viewpoints and in various lighting conditions. Yet, in 
spite of this large variability in visual appearance (see fig. 1 for an illustration), it is fast and 
effortless for us to determine that a scene is a forest or a city or a beach. Being able to categorize 
natural scenes quickly is crucial for our orientation in new as well as familiar environments and 
for visual tasks such as navigation, fast object recognition, or obstacle avoidance (Tversky and 
Hemenway, 1983). Humans can categorize natural scenes with high reliability even if they have 
never seen the particular scene before (Thorpe et al., 1996; Fei-Fei et al., 2007).  
 
[figure 1 about here] 
 
Behavioral studies utilizing rapid serial visual presentation (RSVP) streams of scene photographs 
have highlighted the remarkable speed and ease with which humans can process natural scenes. 
Early work established that viewers required as little as 250 ms to achieve satisfactory 
recognition performance (e.g., Potter and Levy, 1969). Biederman (1972) showed that a brief 
presentation (300 ms–700 ms) of a coherent natural scene improves memory for objects at 
locations that are subsequently cued, when compared to performance on the same task with 
jumbled scenes. In keeping with the literature documenting observers’ ability to extract 
information from very brief presentations of natural scenes, event-related potentials recorded 
while subjects made judgments about whether an image contained an animal or not (or a vehicle 
or not) revealed a differential signal for categorical decisions as early as 150 ms after stimulus 
onset (Thorpe et al., 1996; VanRullen and Thorpe, 2001). Moreover, observers can categorize 
scenes rapidly presented in peripheral vision even when attentional resources are engaged in a 
highly demanding task at fixation (Li et al., 2002; Fei-Fei et al., 2005), and they can effortlessly 
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switch the detection task from one category to another in as little as 50 ms (Walther and Fei-Fei, 
2007). Finally, even in a single glance, many details of natural scenes are accessible to observers 
(Fei-Fei et al., 2007).  
 
Although this body of research has established that the human visual system is adept at 
processing scenes, very little is known about the neural mechanisms that underlie this ability. 
How is it, for instance, that the brain determines whether it is looking at a forest or a city 
skyline? Because the neural representation of natural scene categories is likely to be far more 
distributed than such superordinate categories as places or faces, it is less amenable to discovery 
by traditional neuroscience methods. This makes natural scene categorization an ideal case for 
the application of MVPA techniques. Specifically, we use pattern recognition algorithms to ask 
whether information distinguishing different scene categories is present in various regions of the 
brain. 
 
Our primary goal is the exploration of the human ability to categorize natural scenes. We 
therefore need to look beyond the mere readout of scene categories from the brain. We want to 
determine which activation patterns are most closely related to humans’ perception. We achieve 
this by comparing the types of errors made in decoding scene category from the fMRI data with 
the types of behavioral errors made by the subjects when categorizing natural scenes. 
 

2. The role of pattern analysis in interpreting fMRI data 
 
Pattern analysis has become popular as an analysis tool for fMRI data in recent years. It has been 
used, for instance, to demonstrate the distributed nature of the representation of objects and faces 
(Haxby et al., 2001; Carlson et al., 2003; Cox and Savoy, 2003; O'Toole et al., 2005; 
Kriegeskorte et al., 2008), to access population codes of the representation of visual information 
in primary visual cortex (Haynes and Rees, 2005; Kamitani and Tong, 2005, 2006; Kay et al., 
2008), and to decode the mental state of subjects (Polyn et al., 2005; Haynes and Rees, 2006; 
Haynes et al., 2007). Rather than analyzing the overall level of activity in a particular area of the 
brain, in these studies the specific pattern of activity was analyzed.  
 
To this end, data are represented as vectors in high-dimensional spaces, whose dimensions 
typically represent the values of individual voxels or, after dimensionality reduction, the related 
rotated and scaled coordinates. These data vectors are sorted into groups according to 
experimental conditions such as the orientation of gratings, identity of objects or scenes etc. It is 
the goal of pattern recognition algorithms to separate those vectors belonging to one condition 
from those belonging to another in a manner that generalizes well to new data not seen before by 
the algorithms. This goal is achieved by computing the parameters of decision boundaries 
between the vectors belonging to the experimental conditions. In fMRI analysis we typically 
have many dimensions (voxels) to deal with, but only relatively few data points (brain 
acquisitions) for each condition. For this reason, most MVPA algorithms use hyperplanes as the 
simplest decision boundaries possible. Such algorithms are called “linear” and include, among 
others, correlation analysis, support vector machines with linear kernels, Gaussian Naïve 
Bayesian classifiers (when used with shared covariances among categories), and linear 
discriminant analysis. The hyperplanes found by these algorithms bisect feature space: the data 



5 
 

in one half correspond to one experimental condition, the data in the other half to another 
condition. The goal is for this division of feature space to generalize to new experimental data, 
allowing for the generation of predictions, which can then be confirmed or refuted. 
 
An important question remains, however: How is the decision boundary in this high-dimensional 
voxel space related to the representation of, say, visual percepts that people access when they 
respond to the stimuli? These pattern recognition algorithms are powerful statistical constructs, 
pulling out regularities in the data patterns that allow for the discrimination of conditions, 
irrespective of their relations to human behavior. In doing so these algorithms may rely on 
properties of the data that are irrelevant to the human participant, and whose variations among 
experimental conditions could even be a mere coincident. 
 
This point is nicely illustrated by an anecdote from the early years of pattern recognition 
research1. Researchers designed neural networks for image recognition for the military. They 
wanted their neural networks to recognize tanks in photographs. They trained the networks with 
many pictures of tanks as well as pictures without tanks and let the network weights converge. 
After training was complete, the network was almost perfect at telling which photographs 
contained tanks and which did not – the researchers rejoiced. When they finally decided to go 
out and take new pictures to test their tank recognition system, however, the researchers were 
shocked to discover that the predictions of the network were no better than random guesses. 
Further investigation revealed that the neural network had not learned anything about tanks at all. 
It turned out that all of the original training pictures with tanks had been shot on a sunny day and 
all of the negative examples on a cloudy day. The network had in fact learned to discriminate 
between bright and dark images and not between images with and without tanks. 
 
Since those days, the theory of pattern recognition has come a long way (e.g., Bishop, 2006). We 
are now much more aware of problems such as overfitting, quality of generalization, and clean 
separation of training and test data (Hanson et al., 2004; O'Toole et al., 2007). We also have 
statistical techniques at our disposal that help us ameliorate these pitfalls (Mitchell et al., 2004).  
 
However, we are still faced with the question: Do the patterns learned by our algorithms 
correspond to the patterns of neural activity being used by the brain? We are not simply asking 
whether the algorithms have learned sensible decision boundaries that accurately generalize to 
new data. We are interested in using the algorithms to tell us something about how the human 
brain works beyond the knowledge of experimental conditions being decoded from a brain area. 
How do we know that the algorithms are using the same information that human subjects are 
accessing in the experiment?  
 
Fortunately, the nature of the problem also gives us constraints that help us solve it. In many 
cases we already know how the brain processes certain types of stimuli. And if we have a model 
of the function of particular brain regions, we can use it to guide the interpretation of the fMRI 
data. This approach has been demonstrated by Kay et al. (2008) for fMRI data read out from 
primary visual cortex (V1). In the training phase of their experiment, Kay et al. showed their two 
subjects 1750 images of natural scenes and used the resulting fMRI data from V1 to fit a 
receptive field structure encompassing location, orientation, and spatial frequency selectivity for 
                                                 
1 http://www.bbc.co.uk/dna/h2g2/A413687 
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each voxel. Equipped with this knowledge, they could predict with high accuracy (82% average 
over two subjects) which of 120 previously unseen images the subjects were viewing in the test 
phase of the experiment. It was crucial to this effort that Kay et al. had a good model of the 
receptive field properties in V1. 
 
A similarly-minded approach was used by Mitchell et al. (2008)  to predict the fMRI activity 
elicited by 60 concrete nouns. A model of intermediate semantic features was fitted based on the 
frequency of co-occurrence of the nouns with a set of 25 sensory-motor verbs in a large text 
corpus. The activity of each voxel was modeled as a linear combination of these 25 semantic 
features. The fMRI activity of 58 of the 60 nouns was used to find the weights for this linear 
combination, which were then used to predict the activity patterns elicited by the two left-out 
nouns. This prediction was better than chance: matching up the predicted and the actually 
elicited activity patterns, allowed the researchers to tell which of the two left-out fMRI images 
belonged to which of the two left-out nouns in 77% of the cases (chance level: 50%). Here again, 
having a prior model based on a large corpus of background information was instrumental for 
achieving good predictions. 
 
But for the majority of the cortical areas in the brain and for most brain functions, we do not 
have such explicit models. Here we demonstrate an entirely different, equally powerful approach 
for moving beyond decoding accuracies. To scrutinize whether patterns of fMRI activation are 
fundamentally related to subject performance, we evaluate the MVPA algorithms against 
patterns of human behavior. There has been a long history of behavioral experiments to study 
visual perception going back, at least, to Wilhelm Wundt (Wundt, 1874) and his teacher 
Hermann von Helmholtz (von Helmholtz, 1925/1909). Comparisons with behavior can serve as 
an important constraint when using powerful statistical methods to extract signal from brain data. 
We propose that relating activity patterns to behavioral data with MVPA can be used as an 
effective tool to gain new insights into the neural mechanisms of visual perception and cognitive 
processing. We illustrate this point with examples from our own work on natural scene 
categorization. 
 
 

3. Relationship between behavioral data and fMRI decoding 
 
Behavior arises from brain activity. It is thus natural to combine measurements of brain activity 
and behavior in order to learn more about neural function. Neuroimaging has the advantage of 
providing us with information about patterns of activity in the entire brain all at once at a 
reasonable spatial resolution. What neuroimaging does not tell us is whether subjects actually use 
these patterns to perceive the stimulus, solve the task, or generate a response. Analysis of 
behavior, on the other hand, gives us insight into a subject’s experience, and this can be used to 
constrain the interpretation of fMRI data.  
 
In the concrete example of natural scene categorization we will see how comparisons of error 
patterns between fMRI decoding and behavior help us to establish which brain areas are more 
closely related to human perception. To get subjects to make errors in categorizing natural 
scenes, the presentation times of the images needed to be short and followed by a perceptual 
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mask. These experimental conditions are not optimal for fMRI experiments, however. Instead, 
we used image presentation times of more than a second to ensure a strong visual signal for each 
image. Furthermore, since we expect scene categories to differ in subtle ways, we are relying on 
the power of a block design to strengthen our category-related signal. However, since our ability 
to decode scene category in our fMRI experiment and participants’ ability to discriminate briefly 
presented scene categories are both predicated on the quality of the category-specific 
representation in the brain, we predict that these two measures will be correlated 
 
Decoding patterns of fMRI activity assumes that there is a category-specific signal present in the 
brain, and that we can use classification algorithms to tease some part of the signal out of the 
noisy fMRI data. The weaker or less distinct the category-specific signal is, the harder it will be 
to read out that signal. This will cause the decoding algorithm to make more mistakes. If the 
subject is relying on the same category-specific signal to make a decision about the category 
membership of a presented scene, then her error rate, too, should go up if the signal is weaker. 
This is true in particular for short presentation times when accumulation of evidence about the 
stimulus is disrupted by a perceptual mask. Therefore, if certain stimuli are more confusable than 
others, then we should see higher error rates for these stimuli in the behavioral response as well 
as in decoding from fMRI activity in areas that contribute to the behavioral decision. 
 
[figure 2 about here] 
 
For a more formal treatment of the relationship between accuracy measures in fast forced-choice 
experiments and the signal decoded from fMRI data as a race-diffusion model of decision 
making in the brain (Ratcliff, 1985; Bogacz, 2007) see figure 2. This simple model illustrates 
how a noisier representation of the stimulus in the brain (weaker evidence for the stimulus) can 
lead to higher error rates in a fast two-alternative forced-choice experiment with short 
presentation times. By the same argument we would expect to see higher rates of confusion for 
stimuli whose representations are more similar in experiments with more than two choices.  
 
It is clear that behavior should be taken into account when trying to understanding brain 
functions intimately tied to behavioral output, such as motor responses or decision processes. In 
fact, signals decoded from fMRI activity in the motor area have been used to control a robotic 
hand in near-real time (Kawato, 2008). Similarly, in recent years, MVPA has been used to study 
executive brain functions such as decision making and planning (Haynes et al., 2007; Clithero et 
al., 2009).  
 
On the other hand, when the representation of particular stimulus properties in primary sensory 
areas is the main interest, it may be more useful to correlate neural activity with physical 
properties of the stimuli rather than subject behavior. For investigating early visual processing, 
for instance in the primary visual cortex, it may be adequate to only use the input data as ground 
truth, since only one processing step is involved. The behavioral response, removed by many 
more processing steps from early visual processing, is presumably not as useful as ground truth 
in this case. Indeed several MVPA studies have used this approach to describe processing in the 
primary visual cortex (Haynes and Rees, 2005; Kamitani and Tong, 2005, 2006; Kay et al., 2008; 
Miyawaki et al., 2008). However, even in these cases, comparing neural activity with reported 
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subjective experience has generated new insights (Haynes and Rees, 2005; Kamitani and Tong, 
2005). 
 
In the next section, we describe in more detail the fMRI and behavioral experiments on natural 
scene categorization that allowed us to compare a fine grained pattern of errors produced by the 
MVPA algorithm and human behavioral errors.  

 

4. Natural scene categorization 
 
Much of the progress in the visual sciences has been due to a strategy of decomposing visual 
scenes into simple, more tractable components. Of course, such features and objects are greatly 
simplified in comparison to the complex visual scenes we interact with every day. Despite their 
ecological importance, however, we know surprisingly little about how, or even where in the 
brain, we process scenes as a whole.  
 
Humans are extremely efficient at perceiving natural scenes and understanding their contents. 
We tested this ability in a behavioral experiment, in which we showed five subjects photographs 
of natural scenes (see fig. 1 for examples) followed by a perceptual mask (Walther et al., 2009). 
We asked subjects to press one of six keys to indicate to which of the six categories beaches, 
buildings, forests, highways, industry, or mountains each image belonged. To make the task 
more difficult we decreased the presentation time (stimulus onset asynchrony, SOA) of the 
images in a staircasing procedure using the Quest algorithm (King-Smith et al., 1994) down to a 
target performance of 65% correct responses. We needed to use an SOA of as little as 11–45 ms 
(depending on the individual) to get subjects to make enough mistakes in categorizing the scene 
images.  
 
[figure 3 about here] 
 
We recorded the mistakes in a confusion matrix (fig. 3), which shows, for instance, in what 
fraction of cases of being shown a beach (first row) subjects responded by pressing the key that 
belongs to highways (fourth column). For a subject with perfect performance, the confusion 
matrix would have ones on the diagonal and zeros in all off-diagonal fields. As can be seen in 
figure 3, the diagonal entries are considerably larger than the off-diagonals. The mean of the 
diagonal elements (77%) is the accuracy of subjects in the behavioral experiment, which is 
significantly above the chance level of 1/6. In fact, categorization accuracy was significantly 
above chance for each of the six categories. 
 
We also conducted an fMRI experiment, in which subjects passively viewed blocks of 10 images 
of the same category with each image presented for 1.6 s. Six blocks (one for each category) 
were combined in a run, and alternating runs contained upright and up-down inverted images. 
We discuss the utility of the inverted images in the next section. Functional imaging was 
performed on a 3 Tesla Siemens Allegra Scanner. After minimal preprocessing (motion 
correction and normalization to the temporal mean of each run) we extracted the brain volumes 
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corresponding to the blocks of image presentation with a time lag of 4 s to approximate the lag in 
the hemodynamic response.  
 
We trained a linear support vector machine (SVM) in a 6-way classification task to predict 
natural scene category based on the fMRI activity during blocks with upright images. In a leave-
one-run-out (LORO) cross validation procedure, one of the upright runs was held out, the SVM 
was trained on the data from the other runs, and predictions were created for the scene categories 
viewed in the left-out run. The process was repeated until each of the upright runs was left out in 
turn, thus generating predictions for each of them. Correct classification rate was computed as 
the fraction of blocks in which the predicted scene category matched ground truth. 
 
We applied LORO cross validation to the voxels of several regions of interest (ROIs), which 
were determined in separate localizer scans. Known to be involved in the processing of scenes in 
general, the parahippocampal place area (PPA) and the retrospenial cortex (RSC) were included 
as likely candidate regions for scene categorization (Aguirre et al., 1996; Epstein and Kanwisher, 
1998; O'Craven and Kanwisher, 2000). Its sensitivity to a variety of objects (Malach et al., 1995) 
made the lateral occipital complex (LOC) a potentially interesting region, because scenes can be 
construed as collections of objects. We also included the fusiform face area (FFA) as an area 
involved in the processing of complex visual stimuli (Grill-Spector et al., 1999; Gauthier et al., 
2000; Tarr and Gauthier, 2000; Haxby et al., 2001), although its primary sensitivity to faces 
(Kanwisher et al., 1997) might not suggest a role in scene categorization. The primary visual 
cortex (V1) was included in the analysis, because different scene categories may differ in 
properties coded in V1, such as their spatial frequency content (Oliva and Torralba, 2001) or the 
distribution of local texture (Fei-Fei and Perona, 2005; Bosch et al., 2006). 
 
[figure 4 about here] 
 
Results for these regions of interest (ROI) are shown in figure 4. Classification rate from LORO 
cross validation was significantly above chance in V1, LOC, RSC, and PPA, but not in FFA. 
What does this tell us? It means that there is some kind of information present in the voxel 
patterns in each of these ROIs that allows a linear classifier to predict scene category more 
accurately than the throw of a die. It does not tell us, however, whether this is the kind of 
information that human subjects would use to make the category decision. This information 
could be correlated with stimulus attributes but not instrumental in subjects’ judgments. 
 
It would therefore be desirable to have a closer link between the scene category-specific 
information in the fMRI activation patterns and what humans actually do. We achieve this by 
comparing the pattern of errors. We can establish a confusion matrix for the classifier 
predictions, similar to the one we obtained from the behavioral experiment (fig. 5). In the fMRI 
decoding confusion matrix, rows represent the categories shown to subjects, and each entry gives 
the fraction of blocks, for which the classifier predicted this block to belong to the category 
indicated by the column. As before, the diagonal entries are correct classifications (omitted in 
fig. 5), and all off-diagonal entries are errors. It is the particular pattern of errors that allows us to 
compare fMRI decoding results with behavioral performance. As can be seen in figure 5, the 
error pattern from decoding PPA activity is more similar to the behavioral error pattern than the 
one decoded from the FFA. Pairwise correlations of the off-diagonal entries of the confusion 
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matrices give us a quantitative measure of the similarity of error patterns. We find high 
correlation with behavior for PPA, RSC, and LOC, but not for V1 and FFA (fig. 5). 
 
[figure 5 about here] 
 
This result indicates that the patterns of fMRI activity that we see in PPA, RSC, and LOC are 
more closely related to the information used by human subjects in the behavioral experiment. 
This is compatible with the known selectivity of PPA and RSC for natural scenes (Aguirre et al., 
1996; Epstein and Kanwisher, 1998; O'Craven and Kanwisher, 2000; Maguire, 2001; Epstein 
and Higgins, 2007). So far we can only speculate about the role of object-sensitive LOC in 
natural categorization. Objects can often indicate particular scene categories (Hollingworth and 
Henderson, 2002; Davenport and Potter, 2004). For example a beach umbrella indicates that the 
scene is a beach, and a particular type of traffic sign may indicate that the scene is a highway 
scene. Indeed, Bar and Aminoff (2003) have reported activity in LOC for a comparison of strong 
object-scene associations (i.e., object is very typical for the scene) versus weak associations (i.e., 
object can occur in this context but also in many others). It is also possible that information flows 
the opposite way, with global scene information providing context for object detection 
(Biederman, 1972; Bar, 2004). Our current experiments do not allow us to determine the nature 
of the connections between these areas.  
 
 

5. Effects of image manipulations on fMRI decoding and behavior 
 
Another way of comparing the neural signal decoded from patterns of fMRI activation with 
subject behavior is the manipulation of stimuli in such a way as to change behavior. If we can 
establish a change in the behavioral performance, then we can compare how this change affects 
the neural representation that we can decode from the fMRI activity in different parts of the 
brain. 
 
Scene inversion 
 
For example, in our experiment with natural scenes we also presented images that were up-down 
inverted. In the behavioral experiment, categorization accuracy was lower for inverted scenes 
compared to upright scenes (65% versus 77%). Presumably, this is because the layout 
information in the image, which contributes to the correct categorization, gets disrupted by the 
inversion process. Our subjects can still perform the task well above chance, either by using 
other image features that are invariant to inversion such as textures and colors, or by executing 
some form of mental rotation, but the drop in accuracy due to inversion is significant (p < 0.001). 
 
In the fMRI experiment we included a run with inverted images following each run with upright 
images. In each inverted run, the same images were presented in the same order as in the 
preceding upright run, except that they were up-down inverted. We applied the same leave-one-
run-out cross validation procedure as described in the previous section to the inverted runs and 
compared the classification accuracies obtained from our ROIs with the accuracies from the 
upright runs. 
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The significant drop in behavioral performance for inverted relative to upright scenes was 
mirrored in the decoding performance in some but not all of our ROIs. Decoding accuracy for 
inverted runs was significantly lower in the PPA (fig. 4). It also decreased in the LOC, RSC, and 
FFA. However, there was no difference in the decoding accuracy for V1. In other words, it did 
not make a difference to the V1 decoder whether it was trained and tested on upright or inverted 
image; it decoded them all equally well. These results are consistent with our assertion that 
inversion disrupts global scene layout but not local image features such as texture and color. PPA 
is thought to be sensitive to scene layout, and indeed it is most affected by inversion. In contrast, 
V1, which encodes local features, showed no decrement in decoding accuracy for inverted 
scenes. Furthermore, based on these correlations with behavior, we can conclude that the 
information distinguishing natural scene categories in the PPA is much closer to what humans 
use to make their decision than is the category-related information in V1. 
 
Just as for upright images, we can look for matches between decoding and behavior for inverted 
images. If it is true that for inverted scenes we rely more on local texture cues than on layout and 
context, then we should expect a decrease of the error correlations in areas thought to process 
layout and context, such as PPA and RSC, while error correlation in V1 should remain largely 
unaffected. This is in fact what we see for these three areas: error correlation in RSC drops from 
0.34 to -0.09 for inverted images, and in PPA from 0.57 to 0.32, while error correlation in V1 is 
slightly higher for inverted images at 0.31, compared to 0.21 for upright images. It is also 
possible to train the decoder on the data from upright images and test it on data from inverted 
images. We discuss this possibility in detail elsewhere (Walther et al., 2009). 
 
Note that while the presence of correlation with behavior provides evidence in favor of a brain 
region’s participation in the behavior, its absence does not mean that the region does not 
contribute to the task in question. There is no doubt that V1 and other retinotopic areas are 
involved in the processing of natural scenes, for instance. Finding correlation of fMRI decoding 
with behavior means that the information in the fMRI data is similar to the information used by 
the subject to generate her behavioral response. 
 
Good and bad category exemplars 
 
Another way of manipulating behavioral performance of natural scene categorization is 
controlling how well the images presented in the experiment conform to their categories. For 
images that are bad exemplars we should expect a weaker category-related signal in the fMRI 
data than for images that are good exemplars. To address this question we had 4025 color images 
from 6 different categories (beaches, city streets, forests, highways, mountains and offices) rated 
as to how good of an exemplar each image was for its category on a scale from 1 to 5 (Torralbo 
et al., 2009; Torralbo et al., under review). Observers also had the option to say that the image 
was not an exemplar for the particular category at all. In this case the image was eliminated from 
the set. Based on the ratings we selected 80 good and 80 bad images for each of six natural scene 
categories to be used in subsequent behavioral and fMRI experiments (see fig. 6 for examples).  
 
[figure 6 about here] 
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In a behavioral experiment similar to the one in the aforementioned inversion study, subjects 
performed a six-alternative, forced-choice classification of the images with short presentation 
times and masks for the images. We found significantly higher classification accuracy for good 
than for bad exemplars.  
 
We then conducted an fMRI experiment similar to the inversion experiment, except that instead 
of inverted and upright scenes we presented good and bad upright scenes. Runs containing only 
good or only bad images were randomly interleaved. In a leave-two-runs-out cross validation 
procedure we trained a decoder on runs with good and bad exemplars, leaving out one good and 
one bad run. The decoder was then tested on the good and the bad run separately, generating 
predictions of the scene categories in the left-out runs. The procedure was repeated until each run 
was left out once.  
 
In agreement with the behavioral categorization results, scene categories were predicted 
significantly more accurately for the runs with good exemplars than for the runs with bad 
exemplars – but only in the PPA and the RSC (Torralbo et al., 2009; Torralbo et al., under 
review). Decoding accuracy in the LOC and in area V1 did not differ in the two conditions. The 
higher decoding accuracy for good than for bad exemplars in the PPA and RSC was not due to a 
higher BOLD signal in these areas for good exemplars. This match between behavioral results 
and decoding results from PPA and RSC provides more evidence that these two areas contain 
information about scene categories that is vital for making decisions about category membership 
of natural scenes. 
 
All of the examples described so far have one important fact in common: they illustrate the 
importance of comparing fMRI decoding results with behavioral experiments as a means of  
assessing how likely it is that decoding performance seen in particular brain areas is related to 
human perceptual decisions. Note that these experiments were hypothesis-driven: they looked at 
the activity in ROIs that were likely to be involved in the task at hand. In the next section we 
show how comparisons with behavior can be used as an exploratory tool. 
 
 

6. Correlation with behavior as an exploratory tool 
 
Much of the neuroimaging work in visual perception now typically assesses signal in a list of 
candidate ROIs, which are established in separate mapping or localizer scans. This reflects a 
degree of maturity in our understanding of the human and non-human primate visual system. 
However, in developing a new measurement tool, as we are here, we would like to move beyond 
ROIs established by univariate methods and discover new regions with multi-voxel pattern 
analysis, akin to a whole-brain analysis in conventional fMRI processing. 
 
Kriegeskorte et al. (2006) introduced the idea of moving a spherical “searchlight” region (known 
as a “scanning window” in computer vision) to all potential locations in the brain and performing 
statistical analysis on the voxels in each small spherical neighborhood. In their study, 
Kriegeskorte et al. compared experimental conditions by locally computing the Mahalanobis 
distance of the voxel activities in one condition from the activity of the same voxels in another 
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condition. This distance was interpreted as a measure for the information contained in a 
particular small neighborhood with respect to the experimental conditions. A similar method was 
used by Haynes et al. (2007) to decode hidden intentions of subjects planning to add or subtract 
two subsequently presented numbers. In this study, a support vector machine (SVM) was used to 
discriminate between the two possible states of intent. The searchlight procedure was applied to 
both the planning phase and the execution phase of the algebraic operation, and different frontal 
regions were identified in these two cases.  
 
Here we demonstrate how the same idea of analyzing the voxels in a small local region can be 
used to establish a map of correlations with behavior in the entire brain. To this end we analyzed 
the data from our 6-way natural scene categorization experiment with a new behavior-correlation 
searchlight procedure.  We established a spherical searchlight region with a radius of 2.5 voxels 
(8.6 mm), containing 81 voxels, which is similar in size to the ROIs used above. We centered the 
sphere on each voxel in the brain in turn and performed the same leave-one-run-out cross 
validation procedure described before, but using the voxel values within the sphere instead of the 
pre-defined ROIs (fig. 7).  
 
[figure 7 about here] 
 
As a result we obtain two complete brain maps, one of decoding accuracy, and one of correlation 
coefficients of decoding errors with behavioral errors. To generate these maps we first compute 
separate maps for each of the 36 entries in the confusion matrix. We combine these maps across 
subjects by registering them into standard MNI space, spatially smoothing, and averaging them 
across five subjects. Then we average the six maps corresponding to the diagonal entries of the 
confusion matrix (i.e., correct decoding) to yield the brain map of decoding accuracy. The values 
of the maps corresponding to the 30 off-diagonal entries of the confusion matrix (decoding 
errors) are correlated with the off-diagonal entries of the combined behavioral confusion matrix 
at each voxel location, and the Pearson correlation coefficients are stored in the behavior-
correlation brain map. For further analysis we applied a threshold of P < 0.01 (significance of 
Pearson correlation) to the behavior-correlation map. Correction for multiple comparisons was 
performed at the cluster level based on an estimate of the spatial correlation among voxels, 
implemented with AlphaSim from the AFNI toolbox (Cox, 1996), resulting in a minimum cluster 
size of 19 voxels. 
 
[figure 8 about here] 
 
Since comparison of decoding with behavior only makes sense in brain regions that contain 
information related to scene category in the first place, we only consider regions that also have 
decoding accuracy significantly above chance (P < 0.01, t test over five subjects). Regions that 
survived significance tests for error correlation as well as decoding accuracy were located in the 
posterior parahippocampal gyri, the fusiform gyri, the right posterior inferior temporal gyrus, 
anterior parts of both middle occipital gyri, and in the posterior right precuneus. These areas 
included, but were not limited to some of the ROIs from the original study. For comparison, we 
computed the overlap of our original ROIs with the intersection of the above-chance maps for 
behavior correlation and decoding accuracy for each subject separately in MNI space. Figure 8 
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shows the overlap with the ROIs for one subject. Table 1 gives a summary of the results over all 
five subjects. 
 
Table 1. Overlap of ROIs with the searchlight map for behavior-correlation intersected with 
decoding accuracy in percent of ROI voxels, summarized over five subjects.  
ROI mean standard deviation

V1 4.7 % 1.7 % 
FFA 4.1 % 8.4 % 
LOC 3.5 % 4.7 % 
RSC 25.7 % 4.4 % 
PPA 28.6 % 13.1 % 
 
These overlap results indicate that a large number of voxels uncovered by our searchlight 
analysis coincided with our PPA and RSC voxels. In keeping with the lower behavioral 
correlation in V1 and FFA, the behavioral correlation searchlight found very few voxels in these 
areas. The searchlight analysis also uncovered very few voxels in LOC, despite the significant 
behavioral correlation revealed in the ROI analysis. This discrepancy is likely due to small 
differences in the size of the LOC ROIs and the searchlight window used. Overall, this 
comparison serves as a validation of the searchlight analysis of correlation with behavior. 
 
The regions found with this exploratory searchlight analysis further uncovered new potential 
ROIs, including parts of the fusiform gyri, the right posterior inferior temporal gyrus and anterior 
parts of both middle occipital gyri not included in our ROIs, as well as the posterior right 
precuneus. Future experiments might test the properties of these regions with an ROI-based 
approach. It is important to note that it would not be valid to perform this ROI-based analysis on 
the same data set that was used for the searchlight analysis. The correct category labels were 
already used to compute the confusion matrix entries for each searchlight location, irrevocably 
spoiling the data for any further classification analysis. Using these results to select voxels for an 
ROI-based analysis would create fallacies of the kind recently highlighted by Kriegeskorte et al. 
(2009). 
 
 

7. Correlations with behavior in other domains 
 
Correlating fMRI decoding with behavior has also been applied successfully to object and shape 
perception. Williams et al. (2007) have incorporated behavioral information in an analysis of 
object representations in retinotopic cortex and the LOC. In their experiment, Williams et al. 
scanned subjects performing an object categorization task. They then analyzed the correlations of 
activity patterns for same versus different categories separately for trials with correct responses 
and trials with incorrect responses. They found that retinotopic cortex did not care whether the 
subject responded correctly or not: the correlation for same category stimuli was significantly 
higher than for different category stimuli irrespective of subjects’ response. In the LOC, on the 
other hand, the correlation for same category stimuli was higher than for different category 
stimuli only in correct trials, but not in incorrect trials. This suggests that the relation of fMRI 
activity in the LOC to subjective perception is closer than that of early visual areas. Here again 
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we should note that these results do not indicate that a region apparently unrelated to behavior 
(as retinotopic cortex) does not play a critical role in the task. Indeed retinotopic cortex must 
have provided the major portion of the signal to LOC.  
 
Another study investigated the distributed representation of shape in different parts of the LOC  
using a combination of fMRI scanning and behavioral experiments (Haushofer et al., 2008). In 
the behavioral part of the study, participants performed a two-alternative forced-choice task to 
decide whether two successively shown shapes were the same or different. The similarity matrix 
from this task was compared with the correlation matrix obtained from the activity elicited by 
these shapes in an fMRI experiment. It was found that activity in the anterior LOC correlated 
much better with behavior than activity from posterior LOC. When the fMRI data were 
compared with a similarity matrix derived from the physical properties of the shapes, the 
opposite pattern was observed: activity from posterior LOC correlated better with physical 
similarity than activity from anterior LOC. This suggests that the shape representation in the 
posterior LOC is driven mostly by the physical shape of the presented objects, whereas activity 
in the anterior LOC includes subjective perception by the subjects.  
 
Another example of correlating fMRI decoding with behavior is a recent study addressing the 
ability of native speakers of English and Japanese to discriminate /la/ from /ra/ sounds (Raizada 
et al., 2009). In this study, patterns of fMRI activity in right Heschl’s gyrus (primary auditory 
cortex) were used to predict differences in the behavioral ability among individuals to 
discriminate among these sounds. 
  
The correlation of error patterns between fMRI decoding and behavior is closely related to 
similarity analysis (Aguirre, 2007; Kiani et al., 2007; Kriegeskorte et al., 2008). Instead of 
representational dissimilarity matrices (RDMs), we use confusion matrices obtained from a 
classification-based analysis as a measure of similarity. Unlike the correlation-based RDMs, the 
confusion matrices are not necessarily symmetric. That is, there can be biases for confusing, say, 
beaches for highways but not, or not as often, highways for beaches. Therefore, confusion 
matrices are more closely related to decision processes about the stimuli than correlation 
matrices, which can be seen as comparing stimulus similarity. While Kriegeskorte et al. (2008) 
compared similarity structures across species (humans and macaque monkeys) and across 
neurophysiological measurement techniques (fMRI and multiple unit recording), here we 
compare the similarity structures between fMRI decoding and behavior of the same human 
subjects. This allows us to draw inferences about the relation of the neural representations in 
particular areas with the information accessed by humans in generating their behavioral 
response.  
 
 

8. Conclusion 
 
In this chapter we have demonstrated how relating fMRI decoding to behavior can give us new 
insights into the neural representation of visual information. Specifically, we have shown that the 
PPA, RSC, and LOC contain natural scene category information that is closely related to the 
information that human subjects access when they categorize natural scenes in a behavioral 
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experiment. The patterns of errors made when decoding from these areas match well with the 
error patterns in the behavioral experiment. The prominent role of the PPA in scene 
categorization is further highlighted by the fact that accuracy of decoding from PPA significantly 
decreases for inverted scenes, just as accuracy in the behavioral experiment does, and by the fact 
that, similar to behavioral performance, decoding accuracy from PPA is significantly lower for 
bad than for good exemplars of scene categories. 
 
The specific pattern of errors provides a richer description of the data than mere decoding 
accuracy. While we have focused on comparing fMRI data with behavioral data in this chapter, 
the same principle of correlating error patterns can be applied to uncover relations between brain 
regions, or even to compare data across different measurement techniques. As long as the data 
can be used to generate a prediction about the stimulus it is possible to generate a confusion 
matrix. The pattern of errors in the confusion matrix gives us one more standard with which to 
judge the contribution of a region to the brain function under investigation. 
 
Finally, we have extended the use of the correlation of error pattern from ROI-based analysis to 
an exploratory whole-brain searchlight approach, which allows us to find new regions that are 
potentially involved in a behavior. We believe that these techniques have the potential for more 
wide-spread applications in visual neuroscience and beyond. 
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Figure 1. Example images for categories in our scene categorization experiment: beaches, 
buildings, forests, highways, industry, and mountains (from left to right and from top to bottom). 
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Figure 2. Race-diffusion model of decision making. Evidence in favor of choice A or B is 
accumulated over time until the cumulative evidence reaches a decision threshold for either 
choice (dashed lines). Each figure shows five instances of evidence drawn from a normal 
distribution (light gray curves) and the corresponding cumulative evidence (black curves). If 
accumulation of evidence is interrupted due to short stimulus presentation and masking (vertical 
black line), a decision must be made based on the evidence accumulated thus far. (a) Evidence is 
drawn from a normal distribution with a strong bias toward choice A (µbias = 0.5, σ = 1). In all 
five simulation runs, the correct decision in favor of choice A is made, even in the case of 
interrupted evidence accumulation. (b) In the presence of weak evidence in favor of choice A 
(µbias = 0.05, σ = 1), an erroneous decision is made for choice B in two out of five simulation 
runs when evidence accumulation is interrupted.  
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Figure 3. Confusion matrix for the behavioral scene categorization experiment. Diagonal entries 
are correct categorizations, off-diagonal entries are errors. The gray values reflect the frequencies 
of errors. For instances, beaches are frequently mistaken for highways, and images of industry 
are often confused with buildings.
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Figure 4. Accuracy of decoding scene categories from five regions of interest for training and 
testing using upright images (gray), and for training and testing using inverted images (white). 
Significance levels are with respect to baseline chance performance of 1/6th. Decoding accuracy 
is significantly above chance for V1, LOC, RSC, and PPA. However, only the PPA shows a 
significant difference in decoding accuracy between upright and inverted images. Error bars are 
s.e.m. over five subjects. *p < 0.05; **p < 0.01. 
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Figure 5. Confusion matrices for behavior and fMRI decoding with correlations of error patterns 
(off-diagonal elements). The rows of the matrices correspond to the image categories presented 
to the subjects. The columns in the behavioral confusion matrix indicate how frequently subjects 
responded with the respective category (see fig. 3). Correct responses are on the diagonal and are 
not shown in this illustration of error patterns. The entries in the fMRI decoding confusion 
matrices indicate the frequency of the decoding algorithm predicting the category corresponding 
to the column when the subject in fact saw images of the category corresponding to the row. All 
confusion matrices are averages over five subjects. Matches between fMRI decoding and 
behavior are computed as Pearson correlations of the off-diagonal elements. Good correlations 
are obtained for LOC, RSC, and PPA. *p < 0.05; **p < 0.01; †p = 0.069. 
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Figure 6. Examples of good (left two columns) and bad (right two columns) exemplars of 
natural scene categories beaches, cities, forests, highways, mountains, and offices (from top to 
bottom). 
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Figure 7. Illustration of searchlight analysis of correlation with behavior. The searchlight 
template is positioned at every location in the brain in turn, generating a whole-brain error 
correlation map. 
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Figure 8. Searchlight map of error correlation intersected with decoding accuracy. (a) axial view 
(z = –12 mm); (b) sagittal view (x= –21 mm). This analysis was performed for five subjects in 
MNI space. Brain regions that show significant error correlation (p < 0.01) as well as significant 
decoding accuracy (p < 0.01) are marked in yellow. For comparison, the locations of PPA, RSC, 
LOC, and V1 for one of the five subjects are shown in red. Overlap between the subject ROIs 
and the searchlight area is marked orange. Multiple comparison correction was performed on the 
cluster level using AlphaSim. 
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