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Abstract

With the rising popularity of Internet photo and video sharing sites like Flickr, Insta-

gram, and YouTube, there is a large amount of visual data uploaded to the Internet

on a daily basis. In addition to pixels, these images and videos are often tagged with

the visual concepts and activities they contain, leading to a natural source of weakly

labeled visual data, in which we aren’t told where within the images and videos these

concepts or activities occur. By developing methods that can effectively utilize weakly

labeled visual data for tasks that have traditionally required clean data with laborious

annotations, we can take advantage of the abundance and diversity of visual data on

the Internet.

In the first part of this thesis, we consider the problem of complex event recogni-

tion in weakly labeled video. In weakly labeled videos, it is often the case that the

complex events we are interested in are not temporally localized, and the videos con-

tain varying amounts of contextual or unrelated segments. In addition, the complex

events themselves often vary significantly in the actions they consist of, as well as the

sequences in which they occur. To address this, we formulate a flexible, discrimina-

tive model that is able to learn the latent temporal structure of complex events from

weakly labeled videos, resulting in a better understanding of the complex events and

improved recognition performance.

The second part of this thesis tackles the problem of object localization in weakly

labeled video. Towards this end, we focus on several aspects of the object localization

problem. First, using object detectors trained from images, we formulate a method

for adapting these detectors to work well in video data by discovering and adapting

them to examples automatically extracted from weakly labeled videos. Then, we
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explore separately the use of large amounts of negative and positive weakly labeled

visual data for object localization. With only negative weakly labeled videos that

do not contain a particular visual concept, we show how a very simple metric allows

us to perform distributed object segmentation in potentially noisy, weakly labeled

videos. With only positive weakly labeled images and videos that share a common

visual concept, we show how we can leverage correspondence information between

images and videos to identify and detect the common object.

Lastly, we consider the problem of learning temporal embeddings from weakly

labeled video. Using the implicit weak label that videos are sequences of temporally

and semantically coherent images, we learn temporal embeddings for frames of video

by associating frames with the temporal context that they appear in. These embed-

dings are able to capture semantic context, which results in better performance for a

wide variety of standard tasks in video.
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Chapter 1

Introduction

1.1 Background

Following recent advances in computer vision and machine learning, tasks in video

understanding have shifted from classifying simple motions and actions [42, 127] to

understanding complex events and activities in complex Internet videos [100, 106,

141]. Understanding complex events is a difficult task, requiring probabilistic mod-

els and video representations that can reason about and understand the temporal

semantics of what is occurring in the video. In addition, because many events are

characterized by key objects and their interactions, it is imperative to have robust

methods for object localization that can provide accurate spatial localization infor-

mation as a building block for upstream models.

However, for the most part, the annotations required to train such types of models

for difficult tasks such as event recognition [106] and object localization [26, 33] are

extremely expensive to obtain, especially in the case of video data. In video, not only

are annotators required to provide spatial localization of visual concepts, but they

must also provide temporal localization as well. This provides an additional degree

of difficulty compared to images, and a significant investment of time. In addition, it

has been shown that due to domain differences between image and video data [143],

simply applying models trained from images directly to video does not work well.

1
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To circumvent the challenges associated with obtaining expensive spatial and tem-

poral annotations in video data, this thesis focuses on developing methods that are

able to learn from weakly labeled video data. In weakly labeled video data, annota-

tions for visual concepts such as events or objects are given at the video level. For

example, whereas previous works in object localization required training data with

bounding boxes drawn around objects or pixel segmentations of the objects, we only

require labels indicating the presence or absence of an object in a video.

The major advantage to this type of data is that it is cheap and easy to obtain. In

particular, Internet photo and video sharing sites like Flickr, Instagram, and YouTube

contain large amounts of visual data tagged by users with the visual concepts and

activities they contain, leading to a natural source of weakly labeled visual data. By

developing methods that are able to take advantage of weakly labeled video data, we

are able to directly utilize this wealth of data as training data for our algorithms.

In this thesis, we address the standard tasks of video classification, object detection,

object segmentation, and video representation using only weakly labeled video data.

1.2 Thesis outline

In Chapter 2, we consider the problem of complex event recognition in weakly labeled

video. In Chapters 3, 4, 5, and 6, we consider the problem of object localization in

weakly labeled images and video. In Chapter 7, we consider the problem of learning

temporal embeddings from weakly labeled video. We summarize and highlight the

contributions of each chapter below.

Chapter 2 - Learning Latent Temporal Structure for Complex Event Detec-

tion. We address the problem of understanding the temporal structure of complex

events in highly varying videos obtained from the Internet. Towards this goal, we

utilize a conditional model trained in a max-margin framework that is able to au-

tomatically discover discriminative and interesting segments of video, while simulta-

neously achieving competitive accuracies on difficult detection and recognition tasks.

We introduce latent variables over the frames of a video, and allow our algorithm to
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discover and assign sequences of states that are most discriminative for the event.

Our model is based on the variable-duration hidden Markov model, and models du-

rations of states in addition to the transitions between states. The simplicity of our

model allows us to perform fast, exact inference using dynamic programming, which

is extremely important when we set our sights on being able to process a very large

number of videos quickly and efficiently.

Chapter 3 - Shifting Weights: Adapting Object Detectors from Image to

Video. Typical object detectors trained on images perform poorly on video, as

there is a clear distinction in domain between the two types of data. In this chapter,

we tackle the problem of adapting object detectors learned from images to work

well on videos. We treat the problem as one of unsupervised domain adaptation, in

which we are given labeled data from the source domain (image), but only unlabeled

data from the target domain (video). Our approach, self-paced domain adaptation,

seeks to iteratively adapt the detector by re-training the detector with automatically

discovered target domain examples, starting with the easiest first. At each iteration,

the algorithm adapts by considering an increased number of target domain examples,

and a decreased number of source domain examples. To discover target domain

examples from the vast amount of video data, we introduce a simple, robust approach

that scores trajectory tracks instead of bounding boxes. We also show how rich and

expressive features specific to the target domain can be incorporated under the same

framework.

Chapter 4 - Discriminative Segment Annotation in Weakly Labeled Video.

The ubiquitous availability of Internet video offers the exciting opportunity to directly

learn localized visual concepts from real-world imagery. Unfortunately, most such

attempts are doomed because traditional approaches are ill-suited, both in terms of

their computational characteristics and their inability to robustly contend with the

label noise that plagues uncurated Internet content. We present CRANE, a weakly

supervised algorithm that is specifically designed to learn under such conditions.

First, we exploit the asymmetric availability of real-world training data, where small
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numbers of positive videos tagged with the concept are supplemented with large

quantities of unreliable negative data. Second, we ensure that CRANE is robust to

label noise, both in terms of tagged videos that fail to contain the concept as well as

occasional negative videos that do. Finally, CRANE is highly parallelizable, making

it practical to deploy at large scale without sacrificing the quality of the learned

solution.

Chapter 5 - Co-localization I: Real-World Images. In this chapter, we address

the problem of co-localization in real-world images. Co-localization is the problem

of simultaneously localizing (with bounding boxes) objects of the same class across

a set of distinct images. Although similar problems such as co-segmentation and

weakly supervised localization have been previously studied, we focus on being able

to perform co-localization in real-world settings, which are typically characterized by

large amounts of intraclass variation, inter-class diversity, and annotation noise. To

address these issues, we present a joint image-box formulation for solving the co-

localization problem, and show how it can be relaxed to a convex quadratic program

which can be efficiently solved.

Chapter 6 - Co-localization II: Efficient Image and Video. In this chapter,

we address the problem of performing efficient co-localization in images and videos.

Building upon our work in the previous chapter, we show how we are able to naturally

incorporate temporal terms and constraints for video co-localization into a quadratic

programming framework. Furthermore, by leveraging the Frank-Wolfe algorithm (or

conditional gradient), we show how our optimization formulations for both images

and videos can be reduced to solving a succession of simple integer programs, leading

to increased efficiency in both memory and speed.

Chapter 7 - Learning Temporal Embeddings for Complex Video Analy-

sis. In this chapter, we show how to learn temporal embeddings of video frames

using large amounts of unlabeled video data, which can be easily obtained from the
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Internet. The key idea is to extend the distributed word vector representations com-

monly used in the language community into the visual space. In the video analogy,

sentences are complete videos, and words are frames within each video. We propose

three different ways of incorporating contextual information in video data, and com-

prehensively evaluate various design decisions for learning temporal embeddings. We

show improvements on standard video tasks such as retrieval and classification, and

also qualitative results to visualize and illustrate various applications of our embed-

dings.

1.3 Previously published work

Most contributions in this dissertation have first appeared as various publications.

These publications are: [141] (Chapter 2), [143] (Chapter 3), [144] (Chapter 4), [142]

(Chapter 5), [66] (Chapter 6). I have also worked on several other publications during

my PhD [145]. However, they are beyond the scope of this dissertation, and therefore

not discussed in detail here.



Chapter 2

Learning Latent Temporal

Structure for Complex Event

Detection

2.1 Introduction

With the advent of Internet video hosting sites such as YouTube, personal Internet

videos are now becoming extremely popular. There are numerous challenges associ-

ated with the understanding of these types of videos; we focus on the task of complex

event detection. In our problem definition, we are given Internet videos labeled with

an event class, where the label specifies the complex event that occurs within the

video. This is a weakly-labeled setting, as we are not given temporally localized

videos. This means that the event can occur anywhere within the video, and we do

not have temporal segmentations that indicate the time points at which the event

occurs. The detection aspect of our problem manifests itself at the video level, where

in the testing phase, we are also given large numbers of irrelevant videos, and must

detect videos that correspond to events of interest. This is in contrast to the typical

detection task of localizing the event within the video.

Of the difficulties presented by Internet videos, we focus on two points that have

been largely ignored by recent computer vision algorithms. First, there is a large

6
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Figure 2.1: Examples of Internet videos for the event of “Grooming an animal” from
the TRECVID MED dataset [106] that illustrate the variance in video length and
temporal localization of the event.

number of videos available on the Internet, creating the need for algorithms that are

able to efficiently index and process this wealth of data. Secondly, there is a large

amount of variance in these videos, ranging from differences in low-level processing

such as length and resolution, to high-level concepts such as activities, events, and

contextual information. In addition, there is high intra-class variance when trying

to assign class labels to these types of videos, as more often than not the videos are

not temporally localized, and will contain varying amounts of contextual or unrelated

segments.

These points have not been addressed by much of the recent research on activity

recognition and event detection [42, 127]. Although some of the recent works have

considered Internet videos, complex activity recognition tasks are typically already
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temporally localized [91, 100], and event detection tasks focus only on localizing well-

defined primitive events [68]. In addition, few of these works deal with large-scale

classification.

In order to successfully classify these types of videos, we formulate a model over

the temporal domain that is able to discriminatively learn the transitions between

events of interest, as well as the durations of these events. We reiterate the chal-

lenges associated with complex event detection in Internet videos and highlight key

contributions of our model that address these issues:

Extremely large number of difficult videos. Using dynamic programming, our

model is able to perform efficient, exact inference, and our max-margin learning frame-

work is based on the linear kernel Support Vector Machine (SVM), which can be

optimized very quickly using LIBLINEAR [34]. Together, the inference and learn-

ing procedures allow us to process large numbers of videos very quickly. Also, the

discriminative nature of our learning enables us to obtain competitive classification

results on difficult datasets.

Large amounts of variation in video length. Several previous methods that

attempt to model temporal structure assume a video to be of normalized length [83,

100]. However, this is an unrealistic assumption, as the frame rates of the videos are

generally on the same scale. Regardless of the duration of a video, a simple motion

should still occupy the same number of frames. Our model is able to account for this

by representing videos as sequences of fixed length temporal segments.

Weakly-labeled complex events that are not temporally localized. Our

model is flexible and allows for sequenced states of interest to transition and occur

anywhere within a video, which is crucial for the weakly-labeled setting. The appear-

ance, transitions, and durations of these states are automatically learned with only a

class label for the video. In addition, the states can also correspond to semantically

meaningful concepts, such as distinguishing between sequences of frames that are

relevant and irrelevant for an event of interest.
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In summary, the contributions of this chapter are two-fold. First, we identify

several challenges and difficulties associated with complex event detection in Internet

videos, a task of growing importance. And secondly, we formulate a discriminative

model that is able to address these issues, and show promising results on difficult

datasets.

2.2 Related Work

We review related work on Hidden semi-Markov Models (HSMMs), Conditional Ran-

dom Fields (CRFs), and discriminative temporal segments in the context of video,

and refer the reader to a recent survey in the area by Turaga et al. [150] for a com-

prehensive review.

HSMMs [32, 52, 96], CRFs [114, 136], semi-CRFs [125], and similar probabilistic

frameworks [1] have been previously used to model the temporal structure of videos

and text. However, these works differ from ours in that they are applied to different

domains such as surveillance video and gesture recognition, and typically require the

states to not be latent in order for the models to work. In addition, many of these

models were not formulated with large-scale classification in mind, and have complex

inference procedures.

Most similar to our method are recent works in video that learn discriminative

models over temporal segments [83, 98, 100, 126]. Satkin & Hebert [126] and Nguyen

et al. [98] attempt to discover the most discriminative portions or segments of videos.

Laptev et al. [83] divide videos into rigid spatio-temporal bins and compute separate

feature histograms from each bin to capture a rough temporal ordering of features.

Niebles et al. [100] represent videos as temporal compositions of motion segments, and

learn appearance models for each of the segments. Their model is tree structured,

and assumes fixed anchors for each motion segment, penalizing segments that occur

at a distance from their anchors. Our work is different from these previous methods

in that in addition to discovering discriminative segments of video, we also model and

learn the transitions between and durations of these segments with a chain structured

model. Whereas [100] heuristically fixes the anchor points and durations of their
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temporal segments before training, our approach is completely model-based, and

learns all parameters for our transition and duration distributions. There has also

been a separate line of work that seeks to model temporal segments of video with the

use of additional annotations [38, 50], which we do not require.

Drawing upon recent successes in the field, our model leverages the Bag-of-Words

(BoW) feature representation and max-margin learning. Advances in feature rep-

resentations have utilized the BoW model with discriminative classifiers to achieve

state-of-the-art results on popular video datasets [73, 157]. The representation has

also been successfully used with semi-latent topic models [161] and unsupervised gen-

erative models [101]. We learn parameters for our model using the max-margin frame-

work, which has recently become very popular for latent variable models through the

introduction of general learning frameworks [35, 171].

2.3 Our Model

Our model for videos is the conditional variant of the variable-duration hidden Markov

model (HMM), also referred to as an explicit-duration HMM or a hidden semi-Markov

model [32, 96]. We start by introducing our representation for videos, then give

intuition for our model by briefly describing the variable-duration HMM.

2.3.1 Video representation

Given a video, we first divide it into temporal segments of fixed length lseg, which

can be seen in Figure 2.2. By using fixed length segments, we are able to capture the

fact that simple motions should occupy similar numbers of frames, and are invariant

to the total length of the video. With this division into segments, a video can be

represented by n segments, where the number of segments n is proportional to the

video length. For each temporal segment i, we then compute BoW histograms xi

over the features in each segment, and treat these histograms as the observed input

variables of our temporal model.
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Figure 2.2: Given an input video, our algorithm divides it into temporal segments
and builds a structured temporal model on top of the features.

2.3.2 Variable-duration HMM

A traditional approach is to use an HMM to model transitions between states of a

video. However, the HMM suffers because it imposes a geometric distribution on the

time within a state, which results when a state continuously transitions to itself. To

address this, we use the variable-duration HMM, which allows each state to emit a

sequence of observations. This means that we must also model the duration of a state,

since a state can generate multiple observations before transitioning into another

state. We choose to model the duration of a state using a multinomial distribution.

The variable-duration HMM is much more appropriate for our application, since we

expect a single state to generate several temporal segments of video that are linked
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together to form a single, coherent action or event. Our hope is that the latent states

and their durations will be able to capture semantically meaningful and discriminative

concepts that are shared amongst the videos, as in Figure 2.3. Note that by restricting

the states to have a duration of one, we obtain the standard HMM as a specific

instance of the variable-duration HMM.

The conditional variant of the variable-duration HMM is similar to a hidden chain

CRF [114]. The difference is in the duration variables, which form an additional

chain structure beneath the hidden chain CRF as seen in Figure 2.2. Since all the

v-structures in the conditional variant are moralized, the independencies of the two

models are equivalent. Mapping the model onto our video representation, we intro-

duce a latent state for each temporal segment of a video as shown in Figure 2.2. Since

these are latent variables, we are not given labels for them during training or testing.

2.3.3 Model representation

In our model, there are three types of potentials that define the energy of a particular

sequence assignment to the latent state variables z = {z1, z2, . . . , zn} and duration

variables d = {d1, d2, . . . , dn} as shown in Figure 2.2. Intuitively, the duration variable

acts as a counter, and decreases after each consecutive state assignment until it reaches

zero, after which a new state transition can be made. While it is counting down, the

state assignment is not allowed to change. We assume that we are given the maximum

duration dmax for all states and the number of states S for our model. The potentials

are defined in terms of parameters w of our model that will be learned.

The first potential is a singleton appearance potential on the latent state variables

that measures the similarity of the feature histogram xi for temporal segment i to its

assigned state zi.

ψa(Zi = zi) = wa
zi
· xi (2.1)
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The second potential encompasses both the state and duration variables, and mea-

sures the score of transitioning between states, provided we are allowed to transition:

ψt(Zi =zi, Zi−1 = zi−1, Di−1 = di−1) =

−∞ · 1[di−1 > 0, zi 6= zi−1]

+ wtzi−1,zi
· 1[di−1 = 0] (2.2)

The third potential measures the score of a given duration, provided we are en-

tering a new state:

ψd(Zi =zi, Di = di, Di−1 = di−1) =

−∞ · 1[di−1 > 0, di 6= di−1 − 1]

+ wdzi,di · 1[di−1 = 0] (2.3)

Together, these potentials define the energy of a particular sequence assignment

of variables z and d to our model:

E(z,d|w) =
∑
i

(ψa(Zi = zi)

+ψt(Zi = zi, Zi−1 = zi−1, Di−1 = di−1)

+ψd(Zi = zi, Di = di, Di−1 = di−1)) (2.4)

where we initialize ψt(Z1, Z0, D0) = 0 and D0 = 0.

2.4 Inference

Exact maximum a posteriori (MAP) inference for our model can be done efficiently

using dynamic programming. In MAP inference, we must find the sequence of states z

and durations d that maximize the energy function given above in equation 2.4. This

can be done using a recurrence relation that computes the best possible score given

that temporal segment j is assigned to state i. The score is computed by searching
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Figure 2.3: Ideal assignments to latent states and durations for a sequence with a
known temporal segmentation.

over all possible durations d and previous states s, assuming that segment j is the

last segment in the duration of state i. We can use the following recurrence relation

for inference:

Vi,j = max
d∈{1...dmax}
s∈{1...S}

[wa
i · (

j∑
k=j−d+1

xk)

+ wts,i + wdi,d + Vs,j−d] (2.5)

After building up the table of scores V , we can then recover the optimal assign-

ments by backtracking through the table. The runtime complexity for this inference

algorithm is O(nmaxdmaxS
2), where nmax is the maximum number of temporal seg-

ments in all videos. By utilizing structure in the duration variables, our inference

algorithm achieves a complexity that is linear in dmax, whereas a naive implementa-

tion would have quadratic dependence.
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2.5 Learning

There are three sets of parameters that we must learn in our model, the appearance

parameters wa, the transition parameters wt, and the duration parameters wd, which

we can concatenate into a single weight vector:

w = [wa wt wd] (2.6)

Given a training set of N videos and their corresponding binary class labels

yi ∈ {−1, 1}, we can compute their feature representations to obtain our dataset

(〈v1, y1〉, ..., 〈vN , yN〉). To learn our parameters, we adopt the binary Latent SVM

framework of Felzenszwalb et al. [35], which is a specific instance of the Latent Struc-

tural SVM with a hinge loss function [171]. The objective we would like to minimize

is given by:

min
w

1

2
‖w‖2 + C

N∑
i=1

max(0, 1− yifw(vi)) (2.7)

where we consider linear classifiers of the form:

fw(v) = max
h

w · Φ(v,h) (2.8)

The latent variables h in the classifier are solved for by performing MAP inference

on the example v to find the state and duration assignments. Using these assignments,

we can construct the feature vector Φ(v,h) for an example v as follows. For the wa

parameters we sum the feature histograms that are assigned to each state, and for

the wt and wd parameters we count the number of times each state transition and

duration occurs. We then normalize each of these features and concatenate them

together to form the feature vector Φ(v,h).

The objective function is minimized using CCCP [173]. This leads to an iterative

algorithm in which we alternate between inferring the latent variables h, and optimiz-

ing the weight vector w. Once the latent variables are inferred and the feature vectors

Φ(v,h) are constructed for each example, optimizing the weight vector becomes the
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standard linear kernel SVM problem, which can be solved very efficiently using LIB-

LINEAR [34]. This process is repeated for several iterations until convergence or a

maximum number of iterations is reached.

2.5.1 Initialization

In our model, we must initialize the latent states of the temporal segments as well

as their durations for each of our training examples, subject to the constraint that

we have S states we can assign and a maximum duration dmax. For each video,

we begin by initializing each segment to its own state. Then, we use Hierarchical

Agglomerative Clustering to merge adjacent segments. This is done by computing

the Euclidean distance between feature histograms of all adjacent segments, and

repeatedly merging segments with the shortest distance. The number of merges for

a given video is fixed to be half the number of segments in the video.

Then, using all the videos, we run k-means clustering to cluster all the states into

S clusters, and assign latent states according to their cluster assignments. This gives

us the assignments z for the states. We initialize the duration variables by assuming

that all consecutive assignments of the same state are a single state assignment with

duration equal to the number of consecutive assignments.

2.6 Experiments

We test our model on two difficult tasks: activity recognition and event detection.

In both scenarios, we are only given class labels for the videos. We use the Olympic

Sports dataset [100] and the 2011 TRECVID Multimedia Event Detection (MED)

dataset [106]. For both datasets, we compare our model to state-of-the-art baselines

that consider temporal structure, using the same features for all models.

In our experiments, we use 5-fold cross validation for model selection to select

the number of latent states and the C parameter for the SVM. We set the maximum

duration to be the average video length, and set the length of temporal segments

based on the dataset and density of our sampled features. For the Olympic Sports
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Sport Class Niebles et al. [100] Our Method

high-jump 27.0% 18.4%
long-jump 71.7% 81.8%
triple-jump 10.1% 16.1%
pole-vault 90.8% 84.9%

gymnastics-vault 86.1% 85.7%
shot-put 37.3% 43.3%
snatch 54.2% 88.6%

clean-jerk 70.6% 78.2%
javelin-throw 85.0% 79.5%

hammer-throw 71.2% 70.5%
discus-throw 47.3% 48.9%

diving-platform 95.4% 93.7%
diving-springboard 84.3% 79.3%
basketball-layup 82.1% 85.5%

bowling 53.0% 64.3%
tennis-serve 33.4% 49.6%

Mean AP 62.5% 66.8%

Table 2.1: Average Precision values for classification on the Olympic Sports
dataset [100].

dataset, we used 20 frames per segment, and for the MED dataset, we used 100

frames per segment. We train a model for each class, and report average precision

(AP) numbers on the datasets.

2.6.1 Activity recognition

Dataset. The Olympic Sports dataset [100] consists of 16 different sport classes of

Olympic Sports activities that contain complex motions going beyond simple punctual

or repetitive actions. The sequences are collected from YouTube, and class label

annotations obtained using Amazon Mechanical Turk. An important point to note is

that the sequences are already temporally localized.

Comparisons. We compare our model to the method of decomposable motion seg-

ments [100], which achieves state-of-the-art results using local features. Because much

of their performance derives from including a BoW histogram over the entire video

in their feature vector, we follow protocol and concatenate the BoW histogram to
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Event Class Chance Niebles et al. [100] Laptev et al. [83] Our Method, dmax = 1 Our Method

Attempting a board trick 1.18% 5.84% 8.22% 6.24% 15.44%
Feeding an animal 1.06% 2.28% 2.45% 5.28% 3.55%

Landing a fish 0.89% 9.18% 9.77% 7.30% 14.02%
Wedding ceremony 0.86% 7.26% 5.52% 9.48% 15.09%

Working on a woodworking project 0.93% 4.05% 4.09% 3.42% 8.17%

Mean AP 0.98% 5.72% 6.01% 6.34% 11.25%

Table 2.2: Average Precision values for detection on the MED DEV-T dataset.

Event Class Chance Niebles et al. [100] Laptev et al. [83] Our Method, dmax = 1 Our Method

Birthday party 0.54% 2.25% 1.93% 1.97% 4.38%
Changing a vehicle tire 0.35% 0.76% 0.98% 1.01% 0.92%
Flash mob gathering 0.42% 8.30% 7.60% 7.58% 15.29%

Getting a vehicle unstuck 0.26% 1.95% 1.73% 1.82% 2.04%
Grooming an animal 0.25% 0.74% 0.72% 0.73% 0.74%
Making a sandwich 0.43% 1.48% 1.09% 0.80% 0.84%

Parade 0.58% 2.65% 3.77% 4.17% 4.03%
Parkour 0.32% 2.05% 1.95% 1.65% 3.04%

Repairing an appliance 0.27% 4.39% 1.54% 1.38% 10.88%
Working on a sewing project 0.26% 0.61% 1.18% 0.91% 5.48%

Mean AP 0.37% 2.52% 2.25% 2.20% 4.77%

Table 2.3: Average Precision values for detection on the MED DEV-O dataset.

the end of our feature vector Φ(v,h) before classification. For the feature represen-

tation, we use the same features used in [100], which consists of an interest point

detector [82] and concatenated Histogram of Gradient (HOG) and Histogram of Flow

(HOF) descriptors [83]. In addition, because [100] uses a χ2-SVM, we use the method

of additive kernels [152] to approximate a χ2 kernel for our BoW features to maintain

efficient processing while increasing discriminative power. Because the public release

of this dataset is not the full dataset used in the paper [100], we obtained results for

their model on the public release through personal communication with the authors.

The results are given in Table 2.1.

Results. We obtain better AP numbers for 9 of the 16 classes, as well as better

overall mean AP compared to the state-of-the-art baseline model. The promising

performance on this dataset shows that, given well-localized videos, our model is

able to capture the fine structure between temporal segments that define a complex

activity.
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Observing the latent states that our model learns, we find that there are three

key components that allow us to do better than [100]. First, our model is flexible

and allows latent states to appear anywhere within a sequence without penalty. In

the “snatch” sequences, the assignment of the first latent state varies approximately

equally between two different states. This helps to capture the variability that accom-

panies the start of a “snatch” sequence, such as differences in preparatory motions

of the athletes. The baseline model is unable to easily account for this, as it has a

fixed anchor for its segments, and so the beginning of each sequence is almost always

modeled by the same segment. The second component is the effect of modeling the

duration of the segments. For the same latent state, the durations of the state can

vary greatly from sequence to sequence. In some cases, our model is able to realize

that the sequence is extremely short and already very discriminative, and assigns the

same state to the entire sequence. This is not allowed in the baseline model, as the

lengths of the motion segments are pre-specified parameters. Finally, our model is

able to discard unnecessary states and represent most of the sport classes with fewer

than 3 states. The baseline model is optimally trained with 6 motion segments, and

forces sequences into the temporal structure of its segments, causing the optimization

to easily overfit.

We note that our model performs poorly in the “high-jump” and “triple-jump”

classes. The reason for this can be attributed to the weak discriminative power of

the features extracted from these videos. Visualizing the latent states learned for

the “high-jump” class, we find that there are a large number of videos that are all

assigned to a single state. This occurs because the underlying BoW histograms at

the segment level are too similar, and so our model tends to group them together

into a single duration. In addition, the number of videos is skewed for several of the

classes, and “triple-jump” is one of the classes with fewer examples in both training

and testing, which makes it hard for both discriminative models to learn meaningful

parameters.
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2.6.2 Event detection

Dataset. The 2011 TRECVID MED dataset [106] consists of a collection of Inter-

net videos collected by the Linguistic Data Consortium from various Internet video

hosting sites. There are 15 events, and they are split into two sets, the DEV-T

set and the DEV-O set. The DEV-T set consists of the 5 events “Attempting a

board trick”, “Feeding an animal”, “Landing a fish”, “Wedding Ceremony”, and

“Working on a woodworking project”. The DEV-O set consists of the 10 events

“Birthday party”, “Changing a vehicle tire”, “Flash mob gathering”, “Getting a ve-

hicle unstuck”, “Grooming an animal”, “Making a sandwich”, “Parade”, “Parkour”,

“Repairing an appliance”, and “Working on a sewing project”.

The task, although termed event detection, is more similar to that of a retrieval

task. We are given approximately 150 training videos for each event, and in the

two testing sets for DEV-T and DEV-O, we are given large databases of videos that

consist of both the events in the set as well as null videos that correspond to no event.

The null videos significantly decrease the chance AP, causing our resulting numbers

to be very low. There are a total of 10,723 videos in the DEV-T test set, and 32,061

videos in the DEV-O test set. In the TRECVID task, the DEV-T set is used for

development, while the DEV-O set is used for evaluation. We consider the two sets

separately, as it is stated that there may be unidentified positive videos of events from

the DEV-T set in the DEV-O test set, and vice versa.

Comparisons. We compare our models to strong baseline methods that can cap-

ture temporal structure of local features through decomposable motion segments [100],

and rigid spatio-temporal bins [83]. For the feature representation, we extract dense

HOG3D features [73, 158], and use a linear kernel SVM for all models. To illustrate

the effect of the duration variables, we also train a version of our model with the

duration variable set to one, corresponding to a standard hidden chain CRF [114].

Results for the MED datasets are given in Table 2.2 and Table 2.3 for the DEV-T

and DEV-O sets, respectively.
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Figure 2.4: Examples of duration parameters learned for events in the MED dataset.
The x-axes are values of the duration parameters, and the height of the bars represent
the strength of the parameter, which is averaged over all states of the model.

Effect of duration variables. In a few rare cases, the hidden chain CRF is able

to outperform our model by a small margin. This can occur because for some events,

the videos that contain them vary between different types of motions very quickly,

and so the duration variables will sometimes mistakenly merge these variations into a

single state. In relation to the bias-variance tradeoff, the low variance and high bias of

the hidden chain CRF allow it to generalize better for certain events. In theory, any

model learned using the hidden chain CRF can be learned using our duration model as

well, by learning large negative parameters for durations greater than one. However,

this does not always occur as the duration variables are initialized to different values,

and the inference procedures score assignments differently. On the other hand, the

increased performance of the hidden chain CRF also speaks well for our model, as it

shows that through better initializations and model selection techniques, it is possible

to achieve even better accuracies.

Visualizing the parameters learned for the duration variables, we find that the

duration variables are commonly utilized for states that correspond to the contextual
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Landing a �sh

Feeding an animal Repairing an appliance

Grooming an animal

Figure 2.5: Example inference results on two different videos for four of our models
learned on the MED dataset. The red and green boxes represent different latent
states that are the same across the two videos, but different across models.

and irrelevant portions of videos, as they typically occupy large numbers of consecu-

tive temporal segments. In Figure 2.4, we show examples of the multinomial duration

parameters learned for events in the MED dataset. A hidden chain CRF that imposes

a geometric distribution would have a large parameter for the duration of 1, and small

parameters for all other durations. Our models learn duration parameters in favor of

non-geometric distributions, which suggests that the videos are better modeled with

state durations.

Results. Our model achieves the best results for both MED datasets, and achieves

significant gains in AP for most of the events. Much of the analysis from the previous

section on activity recognition holds for these datasets as well. By learning state

assignments that can occur at any temporal location and by modeling their durations,

our model is able to successfully capture the temporal structure of these highly varying

Internet videos, as seen in Figure 2.5. These properties are crucial in MED videos,

as events are not temporally localized and there is a large number of contextual

segments that we must model. For example, in the “Feeding an animal” visualizations
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in Figure 2.5, discriminative segments occur at completely different points in time for

the two videos. The fixed structure of the baseline models makes it unable for them

to capture the varied temporal structure of these videos, as they treat segments at

the same relative locations of two videos to be the same.

Latent semantic understanding. In addition to achieving competitive accuracies

on difficult datasets, our model is also able to capture semantic concepts in the latent

states. We find that in many instances, temporal segments assigned to the same latent

state are related in semantic content. This occurs at varying locations across different

videos, and is shown in Figure 2.5. The “Landing a fish” class is a particularly nice

illustration of this, as we can typically identify a state that corresponds to the actual

catching of the fish.

2.7 Summary

In this chapter we have introduced a model for learning the latent temporal structure

of complex events in Internet videos. Our model is simple, and lends itself to fast,

exact inference, which allows us to process large numbers of videos efficiently. In

addition, we train our model in a discriminative, max-margin fashion and are able

to achieve competitive accuracies on activity recognition and event detection tasks.

We’ve shown competitive results on difficult datasets, as well as examples of semantic

structure that our model is able to automatically extract.



Chapter 3

Shifting Weights: Adapting Object

Detectors from Image to Video

3.1 Introduction

Following recent advances in learning algorithms and robust feature representations,

tasks in video understanding have shifted from classifying simple motions and ac-

tions [42, 127] to detecting complex events and activities in Internet videos [100, 106,

141]. Detecting complex events is a difficult task, requiring probabilistic models that

can understand the semantics of what is occuring in the video. Because many events

are characterized by key objects and their interactions, it is imperative to have robust

object detectors that can provide accurate detections. In this chapter, we focus on

the problem of detecting objects in complex Internet videos. It is difficult to obtain

labeled objects in these types of videos because of the large number of frames, and

the fact that objects may not appear in many of them. Thus, a common approach is

to train object detectors from labeled images, which are widely available. However,

as seen in Figure 3.1, the domain of images and videos is quite different, as it is often

the case that images of objects are taken in controlled settings that differ greatly

from where they appear in real-world situations, as seen in video. Thus, we cannot

typically expect a detector trained on images to work well in videos.

To adapt object detectors from image to video, we take an incremental, self-paced

24
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TRECVID MED (Video domain)ImageNet (Image domain)

Skateboard

Sewing Machine

Sandwich

Figure 3.1: Images of the “Skateboard”, “Sewing machine”, and “Sandwich” classes
taken from (left column) ImageNet [26] and (right column) TRECVID MED [106]
illustrating differences in domain.

approach to learn from the large amounts of unlabeled video data available. We

make the assumption that within our unlabeled video data, there exist instances of

our target object. However, we do not assume that every video has an instance of the

object, due to the noise present in Internet videos. We start by introducing a simple,

robust method for discovering examples in the video data using Kanade-Lucas-Tomasi

(KLT) feature tracks [93, 148]. Building on the discovered examples, we introduce

a novel formulation for unsupervised domain adaptation that adapts parameters of

the detector from image to video. This is done by iteratively including examples

from the video data into the training set, while removing examples from the image

data based on the difficulty of the examples. We define easy examples as ones with

labels that can be predicted confidently (e.g., high likelihood, large distance from

margin), and thus are more likely to be correct. In addition, it is common to have

discriminative features that are only available in the target domain, which we term

target features. For example, in the video domain, there are contextual features in

the spatial and temporal vicinity of our detected object that we can take advantage

of when performing detection. Our approach is able to incorporate the learning of

parameters for these target features into a single objective.
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3.2 Related Work

Most relevant are works that also deal with adapting detectors to video [18, 129, 160,

168], but these works typically deal with a constrained set of videos and limited object

classes. The work of [113] deals with a similar problem, but they adapt detectors

from video to image. Our overall method is also similar to [89], in which we adopt

an incremental approach to learn object category models.

Our setting is closely related to the domain adaptation problem, which has been

studied extensively in vision settings. Several previous approaches focus on learning

feature transformations between domains [41, 76, 123]. More similar to our method

are approaches based on optimizing Support Vector Machine (SVM) related objec-

tives [9, 29, 62, 128, 149, 167] or joint cost functions [177], that treat the features

as fixed and seek to adapt parameters of the classifier from source to target domain.

However, with the exception of [41, 177], previous works deal with supervised or

semi-supervised domain adaptation, which require labeled data in the target domain

to generate associations between the source and target domains. In our setting, unsu-

pervised domain adaptation, the target domain examples are unlabeled, and we must

simultaneously discover and label examples in addition to learning parameters.

The objective we optimize to learn our detector draws inspiration from [39, 77,

90], in which we include and exclude the loss of certain examples using binary-valued

indicator variables. Although our formulation is similar to [39, 90], our method is

iterative and anneals weights that govern the number of examples to use, which is

similar to the idea of self-paced learning [77], where a single weight is decreased to

eventually include the loss of all examples in the objective. However, our method

is different from [77] in that we have three sets of weights that govern the source

examples, target examples, and target features. The weights are annealed in different

directions, giving us the flexibility to iteratively include examples from the target

domain, exclude examples from the source domain, and include parameters for the

target features. In addition, our objective is able to incorporate target features, which

is novel and not considered in [39, 77, 90].

Previous works have also considered ideas similar to our target features [20, 53,
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Figure 3.2: Overview of our algorithm for adapting object detectors from image to
video.

75, 146]. The work of [53] considers feature augmentation, but only with observed

features common to both domains. Unobserved features in the context of clustering

are investigated in [75], but in their setting all examples are assumed to have the same

unobserved features. In [20, 146], features or modalities unseen in the training data

are used to help in testing. However, both works assume there exists relationships

between the seen and unseen features, whereas our target features are completely

unrestricted.

3.3 Our Approach

We begin by providing an overview of our approach to adapting object detectors, as

illustrated in Figure 3.2, and then elaborate on each of the steps. We assume that

we are given a large amount of unlabeled video data with positive instances of our

object class within some of these videos.

We initialize our detector (Step 1 of Figure 3.2) by training a classifier on the la-

beled image positives and negatives, which we denote by our dataset (〈x1, y1〉, ..., 〈xn, yn〉)
with binary class labels yi ∈ {−1, 1}. We consider a common method of learning

weights w of a linear classifier:

w = arg min
w

(
r(w) + C

n∑
i=1

Loss(xi, yi;w)

)
(3.1)

where r(·) is a regularizer over the weights, Loss(·) is a loss function over the training

example, and C controls the tradeoff between the two.
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Our goal then is to discover the top K positive and negative examples from the

unlabeled videos, and to use these examples to help re-train our detector. We do not

attempt to discover all instances, but simply a sufficient quantity to help adapt our

detector to the video domain. To discover the top K video positives and negatives

(Step 2 of Figure 3.2), we utilize the strong prior of temporal continuity and score

trajectory tracks instead of bounding boxes, which we describe in Section 3.3.1. Given

the discovered examples, we optimize a novel objective inspired by self-paced learn-

ing [77] that simultaneously selects easy examples and trains a new detector (Step 3

of Figure 3.2). Using this new detector, we repeat this process of example discovery

and detector training until convergence, as illustrated in Figure 3.2.

3.3.1 Discovering Examples in Video

In this step of the algorithm, we are given weights w of an object detector that can

be used to score bounding boxes in video frames. A naive approach would run our

detector on frames of video, taking the highest scoring and lowest scoring bounding

boxes as the top K video positives and negatives. Although reasonable, this method

doesn’t take advantage of temporal continuity in videos. An object that appears in

one frame of a video is certain to appear close in neighboring frames as well. Previous

works have shown this intuition to yield good results [18, 129, 168].

Track-based scoring. Our key idea is to score trajectory tracks, rather than

bounding boxes, as illustrated in Figure 3.3. We obtain tracks by running a KLT

tracker on our videos, which tracks a sparse set of features over large periods of time.

Because of the large number of unlabeled videos we have, we elect to extract KLT

tracks rather than computing dense tracks using optical flow. Note that these tracks

follow features, and so they may not correspond to centered locations of objects.

For each track, we consider the set of all bounding box placements B around it

that intersect with the track. Each box placement bi ∈ B is associated with a relative

coordinate (bxi , b
y
i ) as well as a score bsi . The relative coordinate (bxi , b

y
i ) is the point

within the box (relative to the top-left corner of the box) that intersects the track.

Using this coordinate, we can compute the position of bi at every point in time along
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Figure 3.3: For a given KLT track, we consider all bounding box placements that
intersect with it, and take the box with the maximum score as the score and associated
bounding box coordinates for this track.

the track. Note that the number of bounding boxes in B is only dependent on the

dimensions of the detector and the scales we search over. The score bsi is computed by

pooling scores of the bounding box along multiple points of the track in time. We use

average pooling in our experiments to be robust to noisy scores. Finally, we associate

the track with the bounding box bmax with the highest score, and use the score bsmax

as the score of the track.

After scoring each track in our unlabeled videos, we select the top and bottom

few scoring tracks, and extract bounding boxes from each using the associated box

coordinates (bxmax, b
y
max) to get our top K video positives and negatives. The boxes

are extracted by sampling frames along the track.

Advantages. Compared to the naive approach without tracks, this approach allows

us to recover from false detections with high scores, which are common for weak

detectors, as it is less likely that there will be multiple false detections with high

scores along a KLT track. Similarly, if the detection scores are consistently high
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along many points of a track, we can be more confident of the object’s presence along

the track. Hence, we can obtain novel examples of the object from various points of

the track that had low scores, since we know the trajectory should correspond to the

object. The same intuitions hold for true detections with low scores and obtaining

negative examples.

3.3.2 Self-Paced Domain Adaptation

In this step of the algorithm, we are given the discovered top K video positives and

negatives, which we denote by the dataset (〈z1, h1〉, ..., 〈zk, hk〉). Together with our

original dataset (〈x1, y1〉, ..., 〈xn, yn〉), we would like to learn a new detector.

A simple method would be to re-train our detector with both datasets using

Equation 3.1. However, we typically aren’t certain that the labels h are correct,

especially in the first iteration when our detector is trained solely from the image

examples. Ideally, we would like to re-train with a set of easier examples whose labels

we are confident of first, and then re-discover video examples with this new detector.

We would also like to stop learning from examples we are unsure of in the image

domain, as they may be the examples most affected by the differences in domain. By

repeating this process, we can avoid bad examples and iteratively refine our set of

top K video positives and negatives before having to train with all of them.

Formulating this intuition, our algorithm selects easier examples to learn from

in the discovered video examples, and simultaneously selects harder examples in the

image examples to stop learning from. An example is difficult if it has a large loss, as

we are not confident in its correct label. The number of examples selected from the

video examples and image examples are governed by weights that will be annealed

over iterations (Step 4 of Figure 3.2).

Basic approach. We start by introducing our approach without target features.

We introduce binary variables v1, ..., vn for the source domain (image) examples, and

binary variables u1, ..., uk for the target domain (video) examples. A value of 0 in-

dicates that an example is difficult, and so we would like to remove its loss from

consideration in the objective function. To prevent the algorithm from assigning all
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examples to be difficult, we introduce parameters Ksource and Ktarget that control the

number of examples considered from the source and target domain, respectively.

(wt+1,vt+1,ut+1) = arg min
w,v,u

(
r(w) + C

( n∑
i=1

viLoss(xi, yi;w) +
k∑
j=1

ujLoss(zj, hj;w)
)

− 1

Ksource

n∑
i=1

vi −
1

Ktarget

k∑
j=1

uj

)
(3.2)

If Ktarget is large, the algorithm prefers to consider only easy target examples

with a small Loss(·), and the same is true for Ksource. In the annealing of the weights

for the algorithm (Step 4 of Figure 3.2), we decrease Ktarget and increase Ksource

to iteratively include more examples from the target domain and decrease examples

from the source domain.

Similar to self-paced learning [77], we obtain a tight relaxation when allowing the

binary variables v and u to take on any value in the interval [0, 1]. With the choice

of r(·) and Loss(·) convex in w, the problem becomes a bi-convex problem, and can

be solved by alternating between (1) solving for w given v and u, and (2) solving

for v and u given w. We refer the reader to [77] for further intuitions on the binary

variables and annealed weights.

Leveraging target features. Often, the target domain we are adapting to has

additional features we can take advantage of. At the start, when we’ve only learned

from a few examples in our target domain, we do not wish to rely on these rich and

expressive features, as they can easily cause us to overfit. However, as we iteratively

adapt to the target domain and build more confidence in our detector, we can start

utilizing these target features to help with detection. The inclusion of these features

is naturally self-paced as well, and can be easily integrated into our framework.

We assume there are a set of features that are shared between the source and

target domains as φshared, and a set of target domain-only features as φtarget: φ =

[φshared φtarget]. The weights w we want to learn can now be divided into wshared and
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wtarget: w = [wshared wtarget]. Since the source data doesn’t have φtarget features,

we initialize those features to be 0 so that wtarget doesn’t affect the loss on the source

data. The new objective function is formulated as:

(wt+1,vt+1,ut+1) = arg min
w,v,u

(
r(w) + C

( n∑
i=1

viLoss(xi, yi;w) +
k∑
j=1

ujLoss(zj, hj;w)
)

+
1

Kfeat
||wtarget||1 −

1

Ksource

n∑
i=1

vi −
1

Ktarget

k∑
j=1

uj

)
(3.3)

This is similar to Equation 3.2, with the addition of the L1 norm term written

as 1
Kfeat ||wtarget||1. To anneal the weights for target features, we increase Kfeat to

iteratively reduce the L1 norm on the target features so that wtarget can become

non-zero. Intuitively, we are forcing the weights w to only use shared features first,

and to consider more target features when we have a better model of the target

domain. The optimization can be solved in the same manner as Equation 3.2. We

can also approximate the L1 norm term for all target features to be effectively binary,

forcing Kfeat to be 0 initially and switching to ∞ at a particular iteration. This

amounts to only considering target features after a certain iteration, and is done in

our experiments for more tractable learning.

3.4 Experiments

We present experimental results for adapting object detectors on the 2011 TRECVID

Multimedia Event Detection (MED) dataset [106] and LabelMe Video [172] dataset.

For both, we select a set of objects which are known to appear in the videos. We

used images from ImageNet [26] for the labeled image data, as there are a large

number of diverse categories on ImageNet that correspond well with the objects that

appear in the videos. We evaluate the detection performance of our models with

the measure used in the PASCAL Visual Object Classes challenge [33], and report

average precision (AP) scores for each class. The detection scores are computed on
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annotated video frames from the respective video datasets that are disjoint from the

unlabeled videos used in the adapting stage.

3.4.1 Implementation Details

In our experiments, we use object detectors that are rectangular filters over Histogram-

of-Gradient (HOG) features [22]. We use L2 regularization for r(·) and hinge loss for

Loss(·), which corresponds to the standard linear SVM formulation. For target fea-

tures, we use contextual spatial features. The spatial features are taken to be HOG

features bordering the object with dimensions half the size of the object bounding

box. As described previously, we approximate the L1 norm term to be binary to

enable fast training using LIBLINEAR [34] when optimizing for w. This also further

decreases the number of model parameters needed to be searched over.

To isolate the effects of adaptation and better analyze our method, we restrict our

experiments to the setting in which we fix the video negatives, and focus our problem

on adapting from the labeled image positives to the unlabeled video positives. This

scenario is realistic and commonly seen, as we can easily obtain video negatives by

sampling from a set of unlabeled or weakly-labeled videos.

Model parameters. In our experiments, we fix the total number of iterations to

5 for tractable training time. For the Ktarget and Ksource weights, we set values

for the first and final iterations, and linearly interpolate values for the remaining

iterations in between. For the Ktarget weight, we estimate the weights so that we

start by considering only the video examples that have no loss, and end with all

video examples considered. For the Ksource weight, we vary the ending weight so that

differing numbers of source examples are left for training at the final iteration. For

the target features, we set the algorithm to allow target features at the midpoint of

total iterations. Based on the number of KLT tracks extracted, we set the top K

examples to be between 100 and 500.

Model selection. The free model parameters that can be varied are the number

of top K examples to discover, the ending Ksource weight, and whether or not to use
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Object InitialBL VideoPosBL Our method(nt) Our method(full) Gopalan et al. [41] (PLS) Gopalan et al. [41] (SVM)

Skateboard 4.29% 2.89% 10.44% 10.44% 0.04% 0.94%
Animal 0.41% 0.40% 0.39% 3.76% 0.16% 0.24%

Tire 11.22% 11.04% 15.54% 15.54% 0.60% 15.52%
Vehicle 4.03% 4.08% 3.57% 3.57% 3.33% 3.16%

Sandwich 10.07% 9.85% 9.45% 12.49% 0.21% 6.68%
Sewing machine 9.76% 9.71% 10.35% 10.35% 0.12% 3.81%

Mean AP 6.63% 6.33% 8.29% 9.36% 0.74% 5.06%

Table 3.1: Average Precision values for object detection on the TRECVID MED
dataset

Object InitialBL VideoPosBL Our method(nt) Our method(full) Gopalan et al. [41] (PLS) Gopalan et al. [41] (SVM)

Car 2.60% 2.13% 2.15% 9.18% 0.34% 1.00%
Boat 0.22% 0.22% 0.22% 0.22% 0.05% 0.32%

Bicycle 19.85% 19.76% 20.27% 20.27% 0.21% 16.32%
Dog 1.74% 2.42% 2.47% 4.75% 0.18% 1.48%

Keyboard 0.41% 0.67% 0.59% 0.59% 0.13% 0.09%

Mean AP 4.96% 5.04% 5.14% 7.00% 0.18% 3.84%

Table 3.2: Average Precision values for object detection on the LabelMe Video dataset

target features. In our results, we perform model selection by comparing the distri-

bution of scores on the discovered video positives. The distributions are compared

between the initial models from iteration 1 for different model parameters to select K

and Ksource, and between the final iteration 5 models for different model parameters

to determine the use of target features. This allows us to evaluate the strength of the

initial model trained on the image positives and video negatives, as well as our final

adapted model. We select the model with the distributions indicating the highest

confidence in its classification boundary.

3.4.2 Baseline Comparisons

InitialBL. This baseline is the intial detector trained only on image positives and

video negatives.

VideoPosBL. This baseline uses the intial detector to discover the top K video

positives from the unlabeled video, then trains with all these examples without iter-

ating. Thus, it incorporates our idea of discovering video positives by scoring tracks
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and re-training, but does not use self-paced domain adaptation for learning weights.

It can also be thought of as our method run for one iteration.

Our method(nt). This baseline uses our full method with the exception of target

features.

Gopalan et al.. This is a state-of-the-art method for unsupervised domain adap-

tation [41] that models the domain shift in feature space. Since we are not given

labels in the target domain, most previous methods for domain adaptation cannot be

applied to our setting. This method samples subspaces along the geodesic between

the source and target domains on the Grassman manifold. Using projections of both

source and target data onto the common subspaces, they learn a discriminative clas-

sifier using partial least squares (PLS) with available labels from either domains. We

ran their code using their suggested parameter settings to obtain results for their

method on our task. We also show results for their method using a linear SVM as

the classifier to allow for fair comparisons.

3.4.3 TRECVID MED

The 2011 TRECVID MED dataset [106] consists of a collection of Internet videos

collected by the Linguistic Data Consortium from various Internet video hosting

sites. There are a total of 15 complex events, and videos are labeled with either

an event class or no label, where an absence of label indicates the video belongs to

no event class. We select 6 object classes to learn object detectors for because they

are commonly present in selected events: “Skateboard”, “Animal”, “Tire”, “Vehicle”,

“Sandwich”, and “Sewing machine”. These objects appear respectively in the events

“Attempting a board trick”, “Feeding an animal”, “Changing a vehicle tire”, “Get-

ting a vehicle unstuck”, “Making a sandwich”, and “Working on a sewing project”.

The video negatives were randomly sampled from the videos that were labeled with

no event class.

To test our algorithm, we manually annotated approximately 200 frames with

bounding boxes of positive examples for each object, resulting in 1234 annotated
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frames total from over 500 videos, giving us a diverse set of situations the objects can

appear in. For each object, we use 20 videos from the associated event as unlabeled

video training data. Results are given in Table 3.1.

3.4.4 LabelMe Video

LabelMe Video [172] is a database of real-world videos that contains a large set of

annotations including object category, shape, motion, and activity information. We

use the database of videos that was introduced in the original paper [172]. There are

a large number of objects that are annotated in this database, and we select the most

frequently occuring objects that are not scene parts, resulting in 5 objects: “Car”,

“Boat”, “Bicycle”, “Dog”, and “Keyboard”. The video negatives were randomly

sampled from the videos that were not annotated with any of these objects.

We extract more than 200 frames with positive examples for each object class,

resulting in a test set of 1137 images. For each object class, we use the remaining

videos that contain the object as the unlabeled video training data, resulting in around

9 videos per object. Results are given in Table 3.2.

3.5 Discussion

From our results in Tables 3.1 and 3.2, we can observe similar patterns for most object

classes. First, we note that the “VideoPosBL” baseline typically performs on par with

the “InitialBL” baseline, and rarely does it post a slight gain in performance. This

shows that if we discover the top K video positives and re-train our detector with all

of them, we do not obtain consistent gains in performance. Our method of self-paced

domain adaptation is crucial in this case, as we can see that our full method typically

outperforms all other methods by significant margins. As illustrated in Figure 3.4,

our method is able to add new video positives from iteration to iteration that are

good examples, and remove bad examples at the same time. The method of Gopalan

et al. [41] performs very poorly when used in conjunction with the PLS classifier,

but becomes more competitive when used with an SVM. However, even then their
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Sandwich

Car

New examples (Iterations 1,2) New examples (Iterations 4,5) Removed examples

Figure 3.4: Discovered top K video positives using our method for “Sandwich” and
“Car”. After sets of iterations, we show samples of newly discovered video positives
(left, middle columns) and bad examples that were removed (right column).

method performs much worse than our method for nearly all object classes, as it is

difficult to model the underlying domain shift in feature space. This also serves to

illustrate the difficulty of our problem, as poor adaptation can lead to results worse

than the baselines. We show visualizations of our detections compared to baseline

methods in Figure 3.5.

Observing the visualizations of the learned weights for the “Tire”, “Car” and

“Sandwich” classes in Figure 3.6, we see that weights trained with our method exhibit

more clearly defined structure than the “InitialBL” baseline. The target features

also help performance significantly. By capturing interesting patterns in the spatial

context, difficult objects can become easier to detect in the target domain. For the

“Sandwich” class, we can see circular weights in the spatial context surrounding the

sandwich, suggesting that sandwiches typically appear on plates, and for “Car”, we

can clearly distinguish weights for the road beneath the car object. We observe an

average AP gain of 3.93% for classes that choose models with target features versus

no target features. Note that we chose to use simple spatial context as target features

in our models, as they are fast to implement and easily incorporated. However,
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Sandwich

Tire

Animal

Car

Figure 3.5: Detections for “Sandwich”, “Tire”, “Animal”, and “Car”. Green boxes
detections from our method, red boxes detections from “InitialBL”, blue boxes detec-
tions from “VideoPosBL”, and magenta boxes detections from Gopalan et al.(SVM).

we hypothesize that the inclusion of more complex target features such as temporal

movement could help our method achieve even better results.

We observe that for the “Vehicle” and “Keyboard” classes, the “VideoPosBL”

baseline performs better than our full method. Although this is not a common occur-

rence, it can happen when our method of self-paced domain adaptation replaces good

video positives taken in the first iteration with bad examples in future iterations.

This situation arises when there are incorrect examples present in the easiest of the

top K video positives, causing our detector to re-train and iteratively become worse.

If we had better methods for model selection, we could also search over the number of

total iterations as a model parameter, which would include the “VideoPosBL” model

in our set of models to select over, as it is essentially our method run for a single
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Tire
InitialBL Our Method

Sandwich
InitialBL Our Method

Figure 3.6: Visualizations of the positive HOG weights learned for “Tire” and “Sand-
wich” for the “InitialBL” baseline and our method.

iteration.

3.6 Summary

In this chapter we have introduced an approach for adapting detectors from image to

video. To discover examples in the unlabeled video data, we classify tracks instead

of bounding boxes, allowing us to leverage temporal continuity to avoid spurious

detections, and to discover examples we would’ve otherwise missed. Furthermore, we

introduce a novel self-paced domain adaptation algorithm that allows our detector to

iteratively adapt from source to target domain, while also considering target features

unique to the target domain. Our formulation is general, and can be applied to

various other problems in domain adaptation. We’ve shown convincing results that

illustrate the benefit of our approach to adapting object detectors to video.



Chapter 4

Discriminative Segment

Annotation in Weakly Labeled

Video

4.1 Introduction

The ease of authoring and uploading video to the Internet creates a vast resource

for computer vision research, particularly because YouTube videos are frequently

associated with semantic tags that identify visual concepts appearing in the video.

However, since tags are not spatially or temporally localized within the video, such

videos cannot be directly exploited for training traditional supervised recognition

systems. This has stimulated significant recent interest in methods that learn localized

concepts under weak supervision [47, 100, 113, 141]. In this chapter, we examine the

problem of generating pixel-level concept annotations for weakly labeled video.

To make our problem more concrete, we provide a rough pipeline of the overall

process (see Figure 4.1). Given a video weakly tagged with a concept, such as “dog”,

we process it using a standard unsupervised spatiotemporal segmentation method

that aims to preserve object boundaries [12, 44, 88]. From the video-level tag, we

know that some of the segments correspond to the “dog” concept while most probably

do not. Our goal is to classify each segment within the video either as coming from

40
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Spatiotemporal segmentation

Semantic object segmentation

Figure 4.1: Given a weakly tagged video (top), we perform unsupervised spatiotem-
poral segmentation (middle) then identify segments that correspond to the label to
generate a semantic segmentation (bottom).

the concept “dog”, which we denote as concept segments, or not, which we denote

as background segments. Given the varied nature of Internet videos, we cannot rely

on assumptions about the relative frequencies or spatiotemporal distributions of seg-

ments from the two classes, neither within a frame nor across the video; nor can we

assume that each video contains a single instance of the concept. For instance, neither

the dog in Figure 4.1 nor most of the objects in Figure 4.10 would be separable from

the complex background by unsupervised methods.

There are two settings for addressing the segment annotation problem, which

we illustrate in Figure 4.2. The first scenario, which we term transductive segment

annotation (TSA), is studied in [133]. This scenario is closely related to automat-

ically annotating a weakly labeled dataset. Here, the test videos that we seek to

annotate are compared against a large amount of negative segments (from videos

not tagged with the concept) to enable a direct discriminative separation of the test
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video segments into two classes. The second scenario, which we term inductive seg-

ment annotation (ISA), is studied in [47]. In this setting, a segment classifier is

trained using a large quantity of weakly labeled segments from both positively- and

negatively-tagged videos. Once trained, the resulting classifier can be applied to any

test video (typically not in the original set). We observe that the TSA and ISA set-

tings parallel the distinction between transductive and inductive learning, since the

test instances are available during training in the former but not in the latter. Our

proposed algorithm, Concept Ranking According to Negative Exemplars (CRANE),

can operate under either scenario and we show experimental results demonstrating

its clear superiority over previous work under both settings.

Our contributions can be organized into three parts.

1. We present a unified interpretation under which a broad class of weakly super-

vised learning algorithms can be analyzed.

2. We introduce CRANE, a straightforward and effective discriminative algo-

rithm that is robust to label noise and highly parallelizable. These proper-

ties of CRANE are extremely important, as such algorithms must handle large

amounts of video data and spatiotemporal segments.

3. We introduce spatiotemporal segment-level annotations for a subset of the

YouTube-Objects dataset [113], and present a detailed analysis of our method

compared to other methods on this dataset for the transductive segment annota-

tion scenario. To promote research into this problem, we make our annotations

freely available. We also compare CRANE directly against [47] on the inductive

segment annotation scenario and demonstrate state-of-the-art results.

4.2 Related Work

Several methods have recently been proposed for high-quality, unsupervised spa-

tiotemporal segmentation of videos [12, 44, 88, 163, 164]. The computational ef-

ficiency of some of these approaches [44, 164] makes it feasible to segment large
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Weakly labeled training videos

Tagged
w/ “dog”

Positive
segments

Negative
Segments

Spatio-temporal segmentation

Concept Ranking According
to Negative Exemplars

Ranked positive segments

Evaluate using precision-recall
measure over segments

transductive segment annotation

Learn segment classi�er

Test
segments

Ranked test segments

Evaluate using precision-recall
measure over segments

inductive segment annotation

Tagged
w/o “dog”

Weakly labeled test videos

by probability of belonging to “dog”

using top ranked positives + all negatives

Video Data

Scenarios

Figure 4.2: Overview of transductive and inductive segment annotation. In the former
(TSA), CRANE is evaluated on weakly labeled training data; in the latter (ISA), we
train a classifier and evaluate on a disjoint test set.
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numbers of Internet videos. Several recent works have leveraged spatiotemporal seg-

ments for a variety of tasks in video understanding, including event detection [68],

human motion volume generation [99], human activity recognition [11], and object

segmentation [47, 86]. Drawing inspiration from these, we also employ such segments

as a core representation in our work.

Lee et al. [86] perform object segmentation on unannotated video sequences. Our

approach is closer to that of Hartmann et al. [47], where object segmentations are

generated on weakly labeled video data. Whereas [47] largely employ variants on

standard supervised methods (e.g., linear classifiers and multiple-instance learning),

we propose a new way of thinking about this weakly supervised problem that leads

to significantly superior results.

Discriminative segment annotation from weakly labeled data shares similarities

with Multiple Instance Learning (MIL), on which there has been considerable re-

search (e.g., [16, 156, 176, 179]). In MIL, we are given labeled bags of instances,

where a positive bag contains at least one positive instance, and a negative bag con-

tains no positive instances. MIL is more constrained than our scenario, since these

guarantees may not hold due to label noise (which is typically present in video-level

tags). In particular, algorithms must contend with positive videos that actually con-

tain no concept segments as well as rare cases where some concept segments appear

in negative videos.

There is increasing interest in exploring the idea of learning visual concepts from a

combination of weakly supervised images and weakly supervised video [3, 27, 87, 104,

115, 153]. Most applicable to our problem is recent work that achieves state-of-the-art

results on bounding box annotation in weakly labeled 2D images [133]. We show that

this “negative mining” method can also be applied to segment annotation. Direct

comparisons show that CRANE outperforms negative mining and is more robust to

label noise.
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Figure 4.3: Spatiotemporal segments computed on “horse” and “dog” video sequences
using [44].

4.3 Weakly Supervised Segment Annotation

As discussed earlier, we start with spatiotemporal segments for each video, such as

those shown in Figure 4.3. Each segment is a spatiotemporal (3D) volume that

we represent as a point in a high-dimensional feature space using a set of standard

features computed over the segment.

More formally, for a particular concept c, we are given a dataset {〈s1, y1〉, ..., 〈sN , yN〉},
where si is segment i, and yi ∈ {−1, 1} is the label for segment i, with the label being

positive if the segment was extracted from a video with concept c as a weak label, and

negative otherwise. We denote the set P to be the set of all instances with a positive

label, and similarly N to be the set of all negative instances. Since our negative data

was weakly labeled with concepts other than c, we can assume that the segments

labeled as negative are (with rare exceptions) correctly labeled. Our task then is
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Figure 4.4: Visualization of pairwise distance matrix between segments for weakly
supervised annotation.

to determine which of the positive segments P are concept segments, and which are

background segments.

We present a generalized interpretation of transductive segment annotation, which

leads to a family of methods that includes several common methods and previous

works [133]. Consider the pairwise distance matrix (in the high-dimensional feature

space) between all of the segments si from both the positive and negative videos, for

a particular concept c. Across the rows and columns, we order the segments from P
first, followed by those from N . Within P , we further order the concept segments

Pc ⊂ P first, followed by the background segments Pb = P \Pc. This distance matrix

is illustrated in Figure 4.4. The blocks A, B and C correspond to intra-class distances

among segments from Pc, Pb, and N , respectively. The block circumscribing A and

B corresponds to the distances among P . Note that A and B are hidden from the

algorithm, since determining the membership of Pc is the goal of TSA. We can now

analyze a variety of weakly supervised approaches in this framework.

Rather than solely studying TSA as the problem of partitioning P , we find it

fruitful to also consider the related problem of ranking the elements of P in decreasing
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order of a score, S(si) such that top-ranked elements correspond to Pc; thresholding

at a particular rank generates a partition.

Co-segmentation/Clustering. Co-segmentation [154] exploits the observation

that concept segments across videos are similar, but that background segments are

diverse. The purest variants of this approach are unsupervised and do not require N
and can operate solely on the top-left 2×2 sub-matrix. The hope is that the concept

segments form a dominant cluster/clique in feature space.

Kernel density estimation for N . This principled approach to weakly supervised

learning exploits the insight that the (unknown) distribution of background segments

Pb must be similar to the (known) distribution of negative segments N , since the

latter consists almost entirely of background segments. Accordingly, we construct

a non-parametric model of the probability density PN (x) generated from the latter

(block C) and employ it as a proxy for the former (block B). Then, elements from

P that lie in high-density regions of PN (.) can be assumed to come from Pb, while

those in low-density regions are probably the concepts Pc that we seek. A natural

algorithm for TSA is thus to rank the elements si ∈ P according to PN (si).

In practice, we estimate PN using kernel density estimation, with a Gaussian ker-

nel whose σ is determined using cross-validation so as to maximize the log likelihood

of generating N . In our interpretation, this corresponds to building a generative

model according to the information in block C of the distance matrix, and scoring

segments according to:

SKDE(si) = −PN (si) = − 1

|N |
∑
z∈N

N
(

dist(si, z);σ
2
)
, (4.1)

where N(·;σ2) denotes a zero-mean multivariate Gaussian with isotropic variance of

σ2.
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Supervised discriminative learning with label noise. Standard fully super-

vised methods, such as Support Vector Machines (SVM), learn a discriminative clas-

sifier to separate positive from negative data, given instance-level labels. Such meth-

ods can be shoehorned into the weakly supervised setting of segment annotation

by propagating video-level labels to segments. In other words, we learn a discrim-

inative classifier to separate P from N , or the upper 2×2 submatrix vs. block C.

Unfortunately, since P = Pc ∪ Pb, this approach treats the background segments

from positively tagged videos, Pb (which are typically the majority), as label noise.

Nonetheless, such approaches have been reported to perform surprisingly well [47],

where linear SVMs trained with label noise achieve competitive results. This may

be because the limited capacity of the classifier is unable to separate Pb from N and

therefore focuses on separating Pc from N . In our experiments, methods that tackle

weakly labeled segment annotation from a more principled perspective significantly

outperform these techniques.

Negative Mining (MIN). Siva et al.’s negative mining method [133], which we

denote as MIN, can be interpreted as a discriminative method that operates on block

D of the matrix to identify Pc. Intuitively, distinctive concept segments are identified

as those among P whose nearest neighbor among N is as far as possible. Opera-

tionally, this leads to the following score for segments:

SMIN(si) = min
t∈N

(
dist(si, t)

)
. (4.2)

Following this perspective on how various weakly supervised approaches for segment

annotations relate through the distance matrix, we detail our proposed algorithm,

CRANE.

4.4 Proposed Method: CRANE

Like MIN, our method, CRANE, operates on block D of the matrix, corresponding

to the distances between weakly tagged positive and negative segments. Unlike MIN,
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CRANE iterates through the segments in N , and each such negative instance penal-

izes nearby segments in P . The intuition is that concept segments in P are those

that are far from negatives (and therefore less penalized). While one can envision

several algorithms that exploit this theme, the simplest variant of CRANE can be

characterized by the following segment scoring function:

SCRANE(si) = −
∑
z∈N

1
[
si = arg min

t∈P

(
dist(t, z)

)]
· fcut

(
dist(si, z)

)
, (4.3)

where 1(·) denotes the indicator function and fcut(·) is a cutoff function over an input

distance.

Figure 4.5 illustrates the intuition behind CRANE. Background segments in pos-

itive videos tend to fall near one or more segments from negative videos (in feature

space). The nearest neighbor to every negative instance is assigned a penalty fcut(.).

Consequently, such segments are ranked lower than other positives. Since concept seg-

ments are rarely the closest to negative instances, they are typically ranked higher.

Figure 4.5 also shows how CRANE is more robust than MIN [133] to label noise

among negative videos. Consider the points in the green box shown at the top right

of the figure. Here, the unknown segment, si, is very close to a negative instance

that may have come from an incorrectly tagged video. This single noisy instance will

cause MIN to irrecoverably reject si. By contrast, CRANE will just assign si a small

penalty for its proximity and in the absence of corroborating evidence from other

negative instances, si’s rank will not change significantly.

Before detailing the specifics of how we apply CRANE to transductive and in-

ductive segment annotation tasks, we discuss some properties of the algorithm that

make it particularly suitable to practical implementations. First, as mentioned above,

CRANE is robust to noise, whether from incorrect labels or distorted features, con-

firmed in controlled experiments (see Section 4.5.1). Second, CRANE is explicitly de-

signed to be parallelizable, enabling it to employ large numbers of negative instances.

Motivated by Siva et al. [133]’s observation regarding the abundance of negative data,
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Figure 4.5: Intuition behind CRANE. Positive instances are less likely to be concept
segments if they are near many negatives. The green box contrasts CRANE with
MIN [133] as discussed in text.

our proposed approach enforces independence among negative instances (i.e., explic-

itly avoids using the data from block C of the distance matrix). This property enables

CRANE’s computation to be decomposed over a large number of machines simply by

replicating the positive instances, partitioning the (much larger) negative instances,

and trivially aggregating the resulting scores.

4.4.1 Application to transductive segment annotation

Applying CRANE to transductive segment annotation is straightforward. We gen-

erate weakly labeled positive and negative instances for each concept. Then we use

CRANE to rank all of the segments in the positive set according to this score. Thresh-

olding the list at a particular rank creates a partitioning into Pc and Pb; sweeping the

threshold generates the precision/recall curves shown in Figure 4.6.
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Class Shots Frames Class Shots Frames

Aeroplane 9 1423 Cow 20 2978
Bird 6 1206 Dog 27 3803
Boat 17 2779 Horse 17 3990
Car 8 601 Motorbike 11 829
Cat 18 4794 Train 18 3270

Total Shots 151 Total Frames 25673

Table 4.1: Details for our annotations on the YouTube-Objects dataset [113]. Each
shot comes from a different video, as we do not annotate multiple shots in the same
video.

Figure 4.6: Direct comparison of several approaches for transductive segment anno-
tation on the YouTube-Objects dataset [113].

4.4.2 Application to inductive segment annotation

In the inductive segment annotation task, for each concept, we are given a large

number of weakly tagged positive and negative videos, from which we learn a set of

segment-level classifiers that can be applied to arbitrary weakly tagged test videos.

Inductive segment annotation can be decomposed into a two-stage problem. The

first stage is identical to TSA. In the second stage, the most confident predictions for

concept segments (from the first stage) are treated as segment-level labels. Using these

and our large set of negative instances, we train a standard fully supervised classifier.

To evaluate the performance of ISA, we apply the trained classifier to a disjoint test

set and generate precision/recall curves, such as those shown in Figure 4.8.
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CRANE MIL

Figure 4.7: Visualizations of instances for the “cat” class where MIL is better able to
distinguish between the similar looking concept and background segments.

4.5 Experiments

To evaluate the different methods, we score each segment in our test videos, rank seg-

ments in decreasing order of score and compute precision/recall curves. As discussed

above, the test videos for TSA are available during training, whereas those for ISA

are disjoint from the training videos.

4.5.1 Transductive segment annotation (TSA)

To evaluate transductive segment annotation, we use the YouTube-Objects (YTO)

dataset [113], which consists of videos collected for 10 of the classes from the PASCAL

Visual Objects Challenge [33]. We generate a groundtruthed test set by manually

annotating the first shot from each video with segment-level object annotations, re-

sulting in a total of 151 shots with a total of 25,673 frames (see Table 4.1) and 87,791

segments. We skip videos for which the object did not occur in the first shot and
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shots with severe undersegmentation problems. Since there is increasing interest in

training image classifiers using video data [113, 143], our hope is to identify meth-

ods that can “clean” weakly supervised video to generate suitable data for training

supervised classifiers for image challenges such as PASCAL VOC.

Implementation details. We represent each segment using the following set of

features: RGB color histograms quantized over 20 bins, histograms of local binary

patterns computed on 5×5 patches [103, 159], histograms of dense optical flow [15],

heat maps computed over an 8×6 grid to represent the (x, y) shape of each segment

(averaged over time), and histograms of quantized SIFT-like local descriptors ex-

tracted densely within each segment. For negative data, we sample 5000 segments

from videos tagged with other classes; our experiments show that additional negative

data increases computation time but does not significantly affect results for any of

the methods on this dataset.

We use the L2 distance for the distance function in relevant methods, and for the

cutoff function in CRANE, we simply use a constant, fcut(·) = 1. Experiments with

cutoff functions such as step, ramp and Gaussian show that the constant performs

just as well and requires no parameters.

Direct comparisons. We compare CRANE against several methods. MIL refers

to Multiple Instance Learning, the standard approach for problems similar to our

scenario. In our experiments, we use the MILBoost algorithm with ISR criterion [156],

and sparse boosting with decision stumps [30] as the base classifier. MIN refers to

the method of [133], which uses the minimum distance for each positive instance as

the score for the instance. KDE refers to Kernel Density Estimation, which estimates

the probability distribution of the negatives, and then computes the probability that

each positive instance was generated from this distribution.

Discussion. Figure 4.6 shows that our method outperforms all other methods in

overall precision/recall. In particular, we perform much better for the “aeroplane”,

“dog”, “horse”, and “train” classes. Interestingly, for the “cat” class, MIL performs
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Figure 4.8: Direct comparison of several methods for inductive segment annotation
using the object segmentation dataset [47].

very well whereas all other methods do poorly. By visualizing the segments (see

Figure 4.7), we see that in many videos, the cat and background segments are very

similar in appearance. MIL is able to focus on these minor differences while the

others do not. MIN [133] performs second best on this task after CRANE. However,

because it only considers the minimum distance from a positive instance to a negative

instance, it is more susceptible to label noise.

The transductive segment annotation scenario is useful for directly comparing var-

ious weakly supervised learning methods in a classifier-independent manner. How-

ever, TSA is of limited practical use as it requires that each segment from every

input video be compared against the negative data. By contrast, ISA assumes that

once a segment-level concept model has been learned (using sufficient data to span

the concept’s intra-class variability), the model can be applied relatively efficiently to

arbitrary input videos.

4.5.2 Inductive segment annotation (ISA)

For the task of inductive segment annotation, where we learn a segment-level classifier

from weakly labeled video, we use the dataset introduced by [47], as this dataset

contains a large number of weakly labeled videos and deals exactly with this task.

This dataset consists of 20,000 Internet videos from 8 classes: “bike”, “boat”, “card”,
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Figure 4.9: Average precision as we vary CRANE’s fraction of retained segments
(top) and number of training segments (bottom).

“dog”, “helicopter”, “horse”, “robot”, and “transformer”. Additional videos from

several other tags are used to increase the set of negative background videos. These

videos are used for training, and a separate, disjoint set of test videos from these 8

concept classes is used for evaluation.

Implementation details. Due to the computational limitations of the MIL base-

line, we limit the training set to 200,000 segments, equally divided among samples

from P and N . For segment features, we use RGB color histograms and histograms

of local binary patterns. For both CRANE and MIN, we retain the top 20% of

the ranked segments from P as positive training data for the second stage segment

classifier. To simplify direct comparisons, we use k-nearest neighbor (kNN) as the

second-stage classifier, with k=20 and probabilistic output for x generated as the

ratio to closest negative vs. closest positive: minn∈N ||x− n||/minp∈P ||x− p||.
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Direct comparisons. In addition to several of the stronger methods from the TSA

task, we add two baselines for the ISA task: (1) kNN denotes the same second-stage

classifier, but using all of the data P ∪N ; (2) SVM refers to a linear support vector

machine implemented using LIBLINEAR [34] that was reported to do well by [47] on

their task.

Discussion. Figure 4.8 shows that CRANE significantly outperforms the others

in overall precision/recall and dominates in most of the per-class comparisons. In

particular, we see strong gains (except on “dog”) vs. MIL, which is important because

[47] was unable to show significant gains over MIL on this dataset. SVM trained with

label noise performs worst, except for a few low-recall regions where SVM does slightly

better, but no method performs particularly well.

Figure 4.9 (top) examines how CRANE’s average precision on ISA varies with

the fraction of retained segments. As expected, if we retain too few segments, we

do not span the intra-class variability of the target concept; conversely, retaining too

many concepts risks including background segments and consequently corrupting the

learned classifier. Figure 4.9 (bottom) shows the effect of additional training data

(with 20% retained segments). We see that average precision improves quickly with

training data and plateaus around 0.4 once we exceed 100,000 training segments.

Figure 4.10 shows example successes and failures for CRANE under both TSA

and ISA settings. We stress that these results (unlike those in [47]) are the raw

outputs of independent segment-level classification and employ no intra-segment post-

processing to smooth labels. Observations on successes: we segment multiple non-

centered objects (top-left), which is difficult for GrabCut-based methods [118]; we

highlight the horse but not the visually salient ball, improving over [47]; we find the

speedboat but not the moving water. CRANE can occasionally fail in clutter (top

right) or when segmentations are of low quality (cruise ship + water).
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(b)(a)

Figure 4.10: Object segmentations obtained using CRANE. The top two rows are
obtained for the ISA task on the dataset introduced by [47]. The bottom two rows
are obtained for the TSA task on the YouTube-Objects dataset [113]. In each pair,
the left image shows the original spatiotemporal segments and the right shows the
output. (a) Successes; (b) Failures.

4.6 Summary

We introduce CRANE, a surprisingly simple yet effective algorithm for annotating

spatiotemporal segments from video-level labels. We also present a generalized in-

terpretation based on the distance matrix that serves as a taxonomy for weakly su-

pervised methods and provides a deeper understanding of this problem. We describe

two related scenarios of the segment annotation problem (TSA and ISA) and present

comprehensive experiments on published datasets. CRANE outperforms the recent

methods [47, 133] as well as our baselines on both TSA and ISA tasks.



Chapter 5

Co-localization I: Real-World

Images

5.1 Introduction

Object detection and localization has long been a cornerstone problem in computer

vision. Given the variability of objects and clutter in images, this is a highly challeng-

ing problem. Most state-of-the-art methods require extensive guidance in training,

using large numbers of images with human-annotated bounding boxes [48, 137]. Re-

cent works have begun to explore weakly-supervised frameworks [28, 65, 98, 107, 134,

143], where labels are only given at the image level. Inspired by these works, we

focus on the problem of unsupervised object detection through co-localization, which

further relaxes the need for annotations by only requiring a set of images that each

contain some common object we would like to localize.

We tackle co-localization in real-world settings where the objects display a large

degree of variability, and worse, the labels at the image level can be noisy (see

Figure 5.1). Although recent works have tried to explicitly deal with annotation

noise [119, 144, 151], most previous works related to co-localization have assumed

clean labels, which is not a realistic assumption in many real-world settings where we

have to analyze large numbers of Internet images or discover objects with roaming

robots. Our aim is therefore to overcome the challenges posed by noisy images and

58
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Figure 5.1: The co-localization problem in real-world images. In this instance, the
goal is to localize the airplane within each image.

object variability.

We propose a formulation for co-localization that combines an image model and a

box model into a joint optimization problem. Our image model addresses the problem

of annotation noise by identifying incorrectly annotated images in the set, while our

box model addresses the problem of object variability by localizing the common object

in each image using rich correspondence information. The joint image-box formulation

allows the image model to benefit from localized box information, and the box model

to benefit by avoiding incorrectly annotated images.

To illustrate the effectiveness of our method, we present results on three chal-

lenging, real-world datasets that are representative of the difficulties of intra-class

variation, inter-class diversity, and annotation noise present in real-world images. We

outperform previous state-of-the-art approaches on standard datasets, and also show

how the joint image-box model is better at detecting incorrectly annotated images.

Finally, we present a large-scale study of co-localization on ImageNet [26], involving
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ground-truth annotations for 3,624 classes and 939,542 images. The largest previous

study of co-segmentation on ImageNet consisted of ground-truth annotations for 446

classes and 4,460 images [78].

5.2 Related Work

Co-localization shares the same type of input as co-segmentation [63, 64, 71, 78, 119,

155], where we must find a common object within a set of images. However, instead

of segmentations, we seek to localize objects with bounding boxes. Considering boxes

allows us to greatly decrease the number of variables in our problem, as we label boxes

instead of pixels. It also allows us to extract rich features from within the boxes to

compare across images, which has shown to be very helpful for detection [124].

Co-localization shares the same type of output as weakly supervised localiza-

tion [28, 98, 107, 134], where we draw bounding boxes around objects without any

strong supervision. The key difference is that in co-localization we have a more re-

laxed scenario, where we do not know what the object contained in our set of images

is, and are not given negative images for which we know do not contain our ob-

ject. Most similar is [28], which generates candidate bounding boxes and tries to

select the correct box within each image using a conditional random field. Object

co-detection [6] also shares similarities, but is given additional bounding box and

correspondence annotations.

Although co-localization shares similarities with both co-segmentation and weakly

supervised localization, an important and new difficulty we address in this chapter

is the problem of noisy annotations, which has recently been considered [119, 144,

151]. Most similar is [119], where the authors utilize dense correspondences to ignore

incorrect images. We combine an image model that detects incorrectly annotated

images with a box model that localizes the common object, which sets us apart from

previous work. The objective functions in our models are inspired by works from

outlier detection [51], image segmentation [130], and discriminative clustering [5,

63, 165]. Previous works have considered combining object detection with image

classification [48, 137], but only in supervised scenarios.
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Co-localized Images

Joint Image-Box Model

Box Model Image Model

Candidate Bounding Boxes

Original Images

Figure 5.2: Overview of our approach to co-localization.

5.3 Our Approach

Given a set of n images I = {I1, I2, . . . , In}, our goal is to localize the common object

in each image. In addition, we also consider the fact that due to noise in the process of

collecting this set, some images may not contain the common object. We denote these

as noisy images, as opposed to clean images, which contain the common object. Our

goal is to simultaneously identify the noisy images and localize the common object

in the clean images.

An overview of our approach is given in Figure 5.2. We start by generating a set

of candidate boxes for each image that could potentially contain an object. Then,
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we formulate an image model for selecting the clean images, and a box model for

selecting the box in each image that contains an instance of the common object. We

denote the boxes that contain an instance of the common object as positive boxes,

and the ones that don’t as negative boxes.

Combining the two models into a joint formulation, we allow the image model

to prevent the box model from being adversely affected by boxes in noisy images,

and allow the box model to help the image model determine noisy images based on

localized information in the images. Similar approaches have been considered [28],

but only using a box model and only in the context of clean images.

5.3.1 Generating candidate boxes

We use the measure of objectness [2], but any method that is able to generate a set of

candidate regions can be used [13, 124]. The objectness measure works by combining

multiple image cues such as multi-scale saliency, color contrast, edge density, and

superpixel straddling to generate a set of candidate regions as well as scores associated

with each region that denote the probability a generic object is present in the region.

Examples of candidate boxes generated by objectness can be seen in Figure 5.2.

Using the objectness measure, for each image Ij ∈ I, we generate a set of m

candidate boxes Bj = {bj,1, bj,2, . . . , bj,m}, ordered by their objectness score.

5.3.2 Model setup

Given a set of images I and a set of boxes Bj for each image Ij ∈ I, our goal is

to jointly determine the noisy images and select the positive box from each clean

image. To simplify notation, we define the set of all boxes as B = B1 ∪ B2 . . . ∪ Bn
and nb = nm the total number of boxes.

Feature representation. For each box bk ∈ B, we compute a feature representa-

tion of the box as xboxk ∈ Rd, and stack the feature vectors to form a feature matrix

Xbox ∈ Rnb×d. Similarly for each image Ij ∈ I, we compute a feature representation

of the image as ximj ∈ Rd, and stack the feature vectors to form a feature matrix
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Figure 5.3: The variables v in the image model relate to the variables z in the box
model through constraints that ensure noisy images (red) do not select any boxes,
while clean images (green) select a single box as the postive box.

Xim ∈ Rn×d. We densely extract SIFT features [92] every 4 pixels and vector quan-

tize each descriptor into a 1,000 word codebook. For each box, we pool the SIFT

features within the box using 1× 1 and 3× 3 SPM pooling regions [84], and for each

image, we use the same pooling regions over the entire image to generate a d = 10, 000

dimensional feature descriptor for each box and each image.

Optimization variables. We associate with each image Ij ∈ I a binary label

variable vj, which is equal to 1 if Ij is a clean image and 0 otherwise. Similarly, we

associate with each box bj,k ∈ Bj a binary label variable zj,k, which is equal to 1

if bj,k is a positive box and 0 otherwise. We denote by v, the n dimensional vector

v = (v1, . . . , vn)T and by z the nb dimensional vector obtained by stacking the zj,k.
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Making the assumption that in each clean image there is only one positive box, and

in each noisy image there are no positive boxes, we define a constraint that relates

the two sets of variables:

∀Ij ∈ I,
m∑
k=1

zj,k = vj. (5.1)

This constraint is also illustrated in Figure 5.3, where we show the relationship be-

tween image and box variables.

5.3.3 Model formulation

We begin by introducing and motivating the terms in our objective function that

enable us to jointly identify noisy images and select the positive box from each clean

image.

Box prior. We introduce a prior for each box that represents our belief that the

box is positive. We compute an off-the-shelf saliency map for each image [17, 111],

and for each box we compute the average saliency within the box, weighted by the

size of the box, and stack these values into the nb dimensional vector mbox to obtain

a linear term that penalizes less salient boxes:

fPbox(z) = −zT log(mbox). (5.2)

Although objectness also provides scores for each box, we found that the saliency

measure used in objectness is dated and does not work as well.

Image prior. We introduce a prior for each image that represents our belief that

the image is a clean image. For each image, we compute the χ2 distance, defined

further below, from the image feature to the average image feature in the set, and

stack these values into the n dimensional vector mim to obtain a linear term that
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penalizes outlier images:

fPim(v) = vTmim. (5.3)

We experimented with several measures for outlier detection [51], but found that this

simple distance worked well.

Box similarity. We encourage boxes with similar appearances to have the same

label through a similarity matrix based on the box feature described above. Since

this feature is a histogram, we compute a nb × nb similarity matrix S based on the

χ2-distance:

Sij = exp

(
−γ

d∑
k=1

(xboxik − xboxjk )2

xboxik + xboxjk

)
, (5.4)

where γ = (10d)−
1
2 . We set the similarity of boxes from the same image to be 0. We

then compute the normalized Laplacian matrix Lbox = I−D− 1
2SD−

1
2 , where D is the

diagonal matrix composed of the row sums of S, resulting in a quadratic term that

encourages the selection of similar boxes:

fSbox(z) = zTLboxz. (5.5)

This choice is motivated by the work of Shi and Malik [130], who have shown that

considering the second smallest eigenvector of a normalized Laplacian matrix leads to

clustering z along the graph defined by the similarity matrix, leading to Normalized

Cuts when used for image segmentation. Furthermore, Belkin and Niyogi [7] have

shown that minimizing Equation 5.5 under linear constraints results in an equivalent

problem. The similarity term can be interpreted as a a generative term that seeks to

select boxes that cluster well together.

Image similarity. We also encourage images with similar appearances to have the

same label through a similarity matrix based on the image feature described above.
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Replacing the box features with image features in Equation 5.4, we compute a n× n
similarity matrix and subsequently the normalized Laplacian matrix Lim to obtain a

quadratic term that encourages the selection of similar images:

fSim(v) = vTLimv. (5.6)

Box discriminability. Discriminative learning techniques such as the support vec-

tor machine and ridge regression have been widely used within the computer vision

community to obtain state-of-the-art performance on many supervised problems. We

can take advantage of these methods even in our unsupervised scenario, where we

do not know the labels of our boxes [5, 165]. Following [63], we consider the ridge

regression objective function for our boxes:

min
w∈Rd,
c∈R

1

nb

n∑
j=1

m∑
k=1

||zj,k − wxboxj,k − c||22 +
κ

d
||w||22, (5.7)

where w is the d dimensional weight vector of the classifier, and c is the bias. The

choice of ridge regression over other discriminative cost functions is motivated by the

fact that the ridge regression problem has a closed form solution for the weights w

and bias c, leading to a quadratic function in the box labels [5]:

fDbox(z) = zTAboxz, (5.8)

where Abox = 1
nb

(Πnb
(Inb
− Xbox(X

T
boxΠnb

Xbox + nbκI)−1XT
box)Πnb

) and Πnb
= Inb

−
1
nb

1nb
1Tnb

is the centering projection matrix. We know also that Abox is a positive

semi-definite matrix [49]. This quadratic term allows us to utilize a discriminative

objective function to penalize the selection of boxes whose features are not easily

linearly separable from the other boxes.

Image discriminability. Similar to the box discriminability term, we also employ

a discriminative objective to ensure that the features of the clean images should be

easily linearly separable from noisy images. Replacing the box features in Equation 5.7
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with image features, we can similarly substitute the solutions for w and c to obtain:

fDim(v) = vTAimv, (5.9)

where Aim is defined in the same way as Abox, replacing box features with image

features.

Joint formulation. Combining the terms presented above, we obtain the following

optimization problem:

minimize
z,v

zT (Lbox + µAbox)z − zTλ log(mbox)

+ α(vT (Lim + µAim)v + vTλmim)

subject to v ∈ {0, 1}, z ∈ {0, 1}

∀Ij ∈ I,
m∑
k=1

zj,k = vj

K0 ≤
n∑
i=1

vi, (5.10)

where the constraints in the formulation ensure that only a single box is selected in

clean images, and none in noisy images. Using the constant K0, we can avoid trivial

solutions and incorporate an estimate of noise by allowing noisy images to not contain

boxes. This prevents the boxes in the noisy images from adversely affecting the box

similarity and discriminability terms.

The parameter µ controls the tradeoff between the quadratic terms, the parameter

λ controls the tradeoff between the linear and quadratic terms, and the parameter

α controls the tradeoff between the image and box models. Since the matrices Lbox,

Abox, Lim, and Aim are each positive semi-definite, the objective function is convex.

Convex relaxation. In Equation 5.10, we obtain a standard boolean constrained

quadratic program. The only sources of non-convexity in this problem are the boolean
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aeroplane bicycle boat bus horse motorbike
Method left right left right left right left right left right left right Average

Our Method (prior) 13.95 20.51 10.42 8.00 2.27 6.98 9.52 13.04 12.50 13.04 17.95 23.53 12.64
Our Method (prior+similarity) 39.53 35.90 25.00 24.00 0.00 2.33 23.81 34.78 37.50 43.48 48.72 58.82 31.16

Our Method (full) 41.86 51.28 25.00 24.00 11.36 11.63 38.10 56.52 43.75 52.17 51.28 64.71 39.31

Table 5.1: CorLoc results for various combinations of terms in our box model on
PASCAL07-6x2.

constraints on v and z. We relax the boolean constraints to continuous, linear con-

straints, allowing v and z to take any value between 0 and 1. This becomes a convex

optimization problem and can be solved efficiently using standard methods.

Given the solution to the quadratic program, we reconstruct the solution to the

original boolean constrained problem by thresholding the values of v to obtain the

noisy images, and simply taking the box from each clean image with the highest value

of z.

5.4 Results

We perform experiments on three challenging datasets, the PASCAL VOC 2007

dataset [33], the Object Discovery dataset [119], and ImageNet [26]. Following previ-

ous works in weakly supervised localization [28], we use the CorLoc evaluation metric,

defined as the percentage of images correctly localized according to the PASCAL-

criterion: area(Bp∩Bgt)

area(Bp∪Bgt)
> 0.5, where Bp is the predicted box and Bgt is the ground-truth

box. All CorLoc results are given in percentages.

5.4.1 Implementation details and runtime

We set the parameters of our method to be µ = 0.6, λ = 0.001, and α = 1, and

tweaked them slightly for each dataset. We set κ = 0.01 in the ridge regression

objective. Because there are no noisy images for PASCAL and ImageNet, we fix

the value of K0 = n for these datasets. For the Object Discovery dataset, we set

K0 = 0.8n. We use 10 objectness boxes for ImageNet, and 20 objectness boxes for

the other datasets.
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Figure 5.4: Example co-localization results on PASCAL07-6x2. Every three images
in each column contains images from the same class/viewpoint combination.

After computing candidate object boxes using objectness and densely extracting

SIFT features, we are able to co-localize a set of 100 images with 10 boxes per image in

less than 1 minute on a single machine using code written in Python and a quadratic

program solver written in C++.

5.4.2 PASCAL VOC 2007

Following the experimental setup defined in [28], we evaluate our method on the

PASCAL07-6x2 subset to compare to previous methods for co-localization. This

subset consists of all images from 6 classes (aeroplane, bicycle, boat, bus, horse, and

motorbike) of the PASCAL VOC 2007 [33] train+val dataset from the left and right



CHAPTER 5. CO-LOCALIZATION I: REAL-WORLD IMAGES 70

Method Average CorLoc

Russell et al. [121] 22
Chum and Zisserman [21] 33

Deselaers et al. [28] 37
Our Method 39

Table 5.2: CorLoc results compared to previous methods on PASCAL07-6x2.

Method Airplane Car Horse Average CorLoc

Kim et al. [71] 21.95 0 16.13 12.69
Joulin et al. [63] 32.93 66.29 54.84 51.35
Joulin et al. [64] 57.32 64.04 52.69 58.02

Rubinstein et al. [119] 74.39 87.64 63.44 75.16
Our Method 71.95 93.26 64.52 76.58

Table 5.3: CorLoc results on the 100 image subset of the Object Discovery dataset.

aspect each. Each of the 12 class/viewpoint combinations contains between 21 and

50 images for a total of 463 images.

In Table 5.1, we analyze each component of our box model by removing various

terms in the objective. As expected, we see that results using stripped down versions

of our model do not perform as well. In Table 5.2, we show how our full method

outperforms previous methods for co-localization that do not utilize negative images.

In addition, our method does not incorporate dataset-specific aspect ratio priors for

selecting boxes. In Figure 5.4, we show example visualizations of our co-localization

method for PASCAL07-6x2. In the bus images, our model is able to co-localize

instances in the background, even when other objects are more salient. In the bicycle

and motorbike images, we see how our model is able to co-localize instances over a

variety of natural and man-made background scenes.

5.4.3 Object Discovery dataset

The Object Discovery dataset [119] was collected by automatically downloading im-

ages using the Bing API using queries for airplane, car, and horse, resulting in noisy

images that may not contain the query. Introduced as a dataset for co-segmentation,
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Figure 5.5: Example co-localization results on the Object Discovery dataset, with
every two columns belonging to the same class.
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Figure 5.6: Precision-recall curves illustrating the effectiveness of our image-box
model (blue) compared to the image model (pink) at identifying noisy images on
the Object Discovery dataset.

we convert the ground-truth segmentations and results from previous methods to

localization boxes by drawing tight bounding boxes around the segmentations. We

use the 100 image subset [119] to enable comparisons to previous state-of-the-art

co-segmentation methods. CorLoc results are given in Table 5.3, and example co-

localization results are visualized in Figure 5.5(a). From the visualizations, we see how

our model is able to handle intra-class variation, being able to co-localize instances of

each object class from a wide range of viewpoints, locations, and background scenes.

This is in part due to our quadratic terms, which consider the relationships between

all pairs of images and boxes, whereas previous methods like [119] rely on sparse

image connectivity for computational efficiency.
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Method Average CorLoc

Top objectness box [2] 37.42
Our Method 53.20

Table 5.4: CorLoc results on ImageNet evaluated using ground-truth annotations for
3,624 classes and 939,542 images.

We see that our method outperforms previous methods in all cases except for the

airplane class. In our results, we see that since our method localizes objects based

on boxes instead of segmentations [119], the airplane tail is sometimes excluded from

the box, as including the tail would also include large areas of the background. This

causes our method to fail in these images due to the non-convex shape of the airplane

and the height of the tail.

Detecting noisy images. We also quantitatively measure the ability of our joint

image-box model to identify noisy images. Because the solution to the quadratic

program gives continuous values for the image variables v, we can interpret the values

as a detection score for each image and plot precision-recall curves that measure our

ability to correctly detect noisy images, as shown in Figure 5.6. To make comparisons

fair, we compare using the best parameters for the image model alone, and the best

parameters for our joint image-box model. By jointly optimizing over both image and

box models, we see how the box model can correct errors made by the image model

by forcing images that have good box similarity and discriminability to be clean, even

if the image model believes them to be noisy.

5.4.4 ImageNet

ImageNet [26] is a large-scale ontology of images organized according to the WordNet

hierarchy. Each node of the hierarchy is depicted by hundreds and thousands of im-

ages. We perform a large-scale evaluation of our co-localization method on ImageNet

by co-localizing all images with ground-truth bounding box annotations, resulting

in a total of 3,624 classes and 939,542 images. A similar large-scale segmentation

experiment [78] only considered ground-truth annotations in 446 classes and 4,460
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Figure 5.7: Example co-localization results on ImageNet. Each image belongs to a
different class, resulting in a total of 104 classes ranging from lady bug to metronome.
White boxes are localizations from our method, green boxes are ground-truth local-
izations.

images. At this scale, the visual variability of images is unprecedented in comparison

to previous datasets, causing methods specifically tuned to certain datasets to work

poorly.

Due to the scale of ImageNet and lack of code available for previous methods,

we compare our method to the highest scoring objectness box [2], which gives a

strong baseline for generic object detection. To ensure fair comparisons, we use the

objectness score as the box prior for our model in these experiments, with CorLoc

results shown in Table 5.4 and visualizations for 104 diverse classes in Figure 5.7.

Box selection. In Figure 5.8(a), we show the distribution over objectness boxes

that our method selects. The boxes are ordered by decreasing objectness score, so

objectness simply selects the first box in every image. By considering box similarity
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Figure 5.8: (a) Boxes selected by our method on ImageNet, ordered by descending
objectness score; (b) CorLoc performance of our method separated into differing node
heights of ImageNet.

and discriminability between images, our method identifies boxes that may not have

very high objectness score, but are more likely to be the common object.

Effect of ImageNet node height. We also evaluate the performance of our

method on different node heights in ImageNet in Figure 5.8(b). Here, a height of

1 is a leaf node, and larger values result in more generic object classes. We see that

our method seems to perfom better as we go up the ImageNet hierarchy. This could

be because generic objects have more images, and thus our method has more examples

to leverage in the box similarity and discriminability terms.

CorLoc difference between methods. In Figure 5.9, we show the CorLoc differ-

ence between our method and objectness for all 3,624 classes. From the best CorLoc

differences, we find that our method performs much better than objectness on large

rooms and objects, which is probably because objectness tries to select individual

objects or object parts within these large scenes, whereas our model is able to under-

stand that the individual objects are not similar, and select the scene or object as a

whole.
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Figure 5.9: CorLoc difference between our method and objectness on all 3,624 classes
from ImageNet that we evaluate on.

5.5 Summary

In this chapter, we introduce a method for co-localization in real-world images that

combines terms for the prior, similarity, and discriminability of both images and boxes

into a joint optimization problem. Our formulation is able to account for noisy images

with incorrect annotations. We performed an extensive evaluation of our method on

standard datasets, and also performed a large-scale evaluation using ground-truth

annotations for 3,624 classes from ImageNet.



Chapter 6

Co-localization II: Efficient Image

and Video

6.1 Introduction

With the rising popularity of Internet photo and video sharing sites like Flickr and

YouTube, there is a large amount of visual data uploaded to the Internet. In addition

to pixels, these images and videos are often tagged with the visual concepts they

contain, leading to a natural source of weakly labeled data. Recent research has

studied ways of leveraging this data, such as weakly supervised localization [28, 40,

107, 131, 133–135], co-segmentation [63, 71, 119], and co-localization [113, 142].

In this chapter, we address the problem of co-localization in images and videos.

Co-localization is the problem of localizing (with bounding boxes) the common object

in a set of images or videos. Recent work has studied co-localization in images with

potentially noisy labels [142], and co-localization in videos [113] for learning object

detectors. Building upon the success of a recent state-of-the-art method [142], we

propose a formulation for co-localization in videos that can take advantage of temporal

consistency with temporal terms and constraints, while still maintaining a standard

quadratic programming formulation. We also show how we can combine both models

to perform joint image-video co-localization, the logical way of utilizing all of the

weakly supervised data we have available.

76
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Image Co-localization Video Co-localization

Figure 6.1: In the co-localization problem, our goal is to simultaneously localize the
common object of the same class in a set of images or videos.

To efficiently perform co-localization in both images and videos, we show how

our optimization problems can be reduced to a succession of simple integer problems

using the Frank-Wolfe algorithm (also known as conditional gradient) [36]. For image

co-localization, this results in simply taking the maximum of a set of values. For video

co-localization, this results in the shortest path algorithm, which can be efficiently

solved using dynamic programming.

To re-iterate, we make two key contributions in this chapter.

• Formulation for video co-localization. We present a novel formulation for

video co-localization, extending [142] with temporal terms and constraints.

• Frank-Wolfe algorithm for efficient optimization. We show how the

Frank-Wolfe algorithm can be used as in [14] to efficiently solve our optimiza-

tion problems. We show that it leads to solving a succession of simple integer

problems.

We present convincing experiments on two difficult datasets: PASCAL VOC 2007

for images [33], YouTube-Objects for videos [113]. We also show results for joint

image-video co-localization by combining our models.

6.2 Related Work

The co-localization problem is similar to co-segmentation [63, 64, 71, 78, 119, 120,

155] and weakly supervised localization (WSL) [28, 40, 98, 107, 131, 133–135, 144]. In
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contrast to co-segmentation, we seek to localize objects with bounding boxes rather

than segmentations, which allows us to greatly decrease the number of variables in our

problem. Compared to weakly supervised localization (WSL), we are more flexible

because we do not require any negative images for which we know do not contain our

object. However, the co-localization problem and the WSL problem are extremely

similar, and since both problems utilize the same experimental setup and datasets,

we also perform comparisons in our results section.

Our work builds upon the formulation introduced in [142] for co-localization in

images, which defines an optimization objective that draws inspiration from works in

image segmentation [130] and discriminative clustering [5, 63, 165, 178]. Extending

their work, we introduce a formulation for co-localization in videos that incorporates

constraints and terms that capture temporal consistency, a key property in videos. We

also show how the formulation in [142], as well as our video extension, are able to be

efficiently solved using the Frank-Wolfe algorithm [36, 80]. Also similar is [28], which

generates candidate bounding boxes and tries to select the correct box within each

image. However, while they utilize a conditional random field, we adopt a quadratic

programming formulation that can be relaxed and efficiently solved. Similar discrete

optimization approaches have been shown to work well in various computer vision

applications [10, 24, 25]. Our work is also closely related to Chari et al. [14] where

they efficiently solve a quadratic program for multi-object tracking using the Frank-

Wolfe algorithm.

For video co-localization, most similar is [113], which also tackles the problem

of co-localization in videos by proposing candidate regions and selecting the correct

one from each video. In [113], the authors try to leverage temporal information by

proposing candidate tubes, which suffers from poor performance even with an optimal

learning algorithm. In our formulation, we consider the temporal information directly

in our model. Co-localization in video also shares similarities to co-segmentation in

video, which has recently been studied in [19].
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Original Images/Videos Candidate bounding boxes Co-localized Images/Videos

Figure 6.2: An overview of our co-localization approach for images and videos.

6.3 Our Approach

We start by briefly reviewing the co-localization model we use for images [142], and

then show how it can be extended to videos. In both models, we take the approach

of generating a set of candidate bounding boxes in each image/frame, and then for-

mulating an optimization problem to jointly select the box from each image/frame

that contains the common object, as shown in Figure 6.2.

6.3.1 Image Model

Given a set of n images I = {I1, I2, . . . , In}, our goal is to localize the common

object in each image. Using objectness [2], we generate m candidate boxes for each

image that could potentially contain an object, resulting in a set of boxes Bj for

each image Ij ∈ I. Our goal then is to jointly select the box from each image that

contains the common object. To simplify notation, we define the set of all boxes as

B = B1 ∪ B2 . . . ∪ Bn and nb = nm the total number of boxes.

Feature representation. For each box bk ∈ B, we compute a feature representa-

tion of the box as xk ∈ Rd, and stack the feature vectors to form a feature matrix

X ∈ Rnb×d. We densely extract SIFT features [92] at every pixel and vector quantize

each descriptor into a 1,000 word codebook. For each box, we pool the SIFT features

within the box using 1×1 and 3×3 SPM pooling regions [84] to generate a d = 10, 000

dimensional feature descriptor for each box.
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Model formulation. We associate with each box bj,k ∈ Bj a binary label variable

zj,k, which is equal to 1 if bj,k contains the common object and 0 otherwise. We denote

by z the nb dimensional vector obtained by stacking the zj,k. Making the assumption

that in each image there is only one box that contains the common object, we then

solve the following optimization problem to select the best box from each image:

minimize
z

zT (L+ µA)z − zTλ log(m)

subject to z ∈ {0, 1},∀Ij ∈ I :
m∑
k=1

zj,k = 1. (6.1)

The parameter µ controls the tradeoff between the quadratic terms, while the param-

eter λ controls the tradeoff between the linear and quadratic terms. The constraints

enforce that only a single box is selected in each image. We briefly describe the terms

in the objective below, but more details can be found in [142].

Box prior. The vector m is a prior for each box computed from a saliency map [111]

that represents our belief that a box contains the common object given only informa-

tion within the image.

Box similarity. The matrix L = I − D− 1
2SD−

1
2 is the normalized Laplacian ma-

trix [130], where D is the diagonal matrix composed of the row sums of S, the nb×nb
pairwise χ2-similarity matrix computed from X. We set the similarity between boxes

from the same image/video to 0. This matrix encourages boxes with similar appear-

ances from different images/videos to have the same label.

Box discriminability. The matrix:

A =
1

nb
(Πnb

(Inb
−Xbox(X

T
boxΠnb

Xbox + nbκI)−1XT
box)Πnb

) (6.2)

is the discriminative clustering term [5, 165], where Πnb
= Inb

− 1
nb

1nb
1Tnb

is the cen-

tering projection matrix. This term allows us to utilize a discriminative objective
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Box i-1

Box i

Box i+1

Figure 6.3: Given consecutive frames of video, we build a graph between candidate
bounding boxes in adjacent frames. The magenta edges represent the optimal path
through the frames.

function to penalize the selection of boxes whose features are not easily linearly sep-

arable from other boxes. Note that since the matrices L and A are each positive

semi-definite, the objective function is convex.

6.3.2 Video Model

Given a set of n videos V = {V1, V2, . . . , Vn}, our goal is to localize the common object

in each frame of each video. We approach this problem by considering each video

Vi as a collection of temporally ordered frames Ii = {Ii1, Ii2, . . . , Iili}, where li is the

length of video Vi and Iij corresponds to frame j of video Vi. Similar to the image

model, we generate a set of m candidate boxes Bij for each frame of each video using

objectness [2]. Our goal then is to select the box from each frame that contains the

common object. Similar to the image model, we associate with each box bi,j,k ∈ Bi,j
a binary label variable zi,j,k, and stack the variables to obtain z, the nb =

∑n
i=1 lim

dimensional vector.

Defining I = {I1, I2, . . . , In} as the set of all frames, we can apply the same

objective function and constraints from the image model to I. The image model

constraints enforce selecting a single box in each frame, and the image model objective

function captures the box prior, similarity, and discriminability within and across

different videos.
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Incorporating temporal consistency. In video data, temporal consistency tells

us that between consecutive frames, it is unlikely for objects to undergo drastic

changes in qualities such as appearance, position, and size. This is a powerful prior

that is often leveraged in video tasks such as tracking [4, 8, 46, 108, 112, 143, 170].

In our framework, if two boxes from consecutive frames differ greatly in their size

and position, it should be unlikely that they will be selected together. Using this

intuition, we can define a simple temporal similarity measure between two boxes bi

and bj from consecutive frames as follows:

stemporal(bi, bj) = exp

(
− ‖bcenteri − bcenterj ‖2 −

∥∥∥∥ |bareai − bareaj |
max(bareai , bareaj )

∥∥∥∥
2

)
, (6.3)

where bareai is the pixel area of box bi and bcenteri are the center coordinates of box bi,

normalized by the width and height of the frame.

With this similarity metric for all pairs of boxes between adjacent frames, we

obtain a weighted graph Gi for each video Vi that connects the boxes within the

video based on temporal similarity, as shown in Figure 6.3. We threshold small values

of similarity so that dissimilar edges have a weight of 0 and are thus disconnected.

Note that as long as we can obtain a weighted graph, any similarity metric between

two boxes from adjacent frames can be used. This makes our temporal framework

extremely flexible, and allows us to potentially leverage state-of-the-art methods in

object tracking [4, 8, 46, 108, 112, 170].

We collect all the pairwise similarities stemporal between boxes in adjacent frames

into a similarity matrix St, where St(i, j) = stemporal(bi, bj) if bi and bj are boxes in

adjacent frames, and St(i, j) = 0 otherwise. With this matrix, we can compute the

normalized Laplacian U = I−D− 1
2StD

− 1
2 , where D is the diagonal matrix composed

of the row sums of St. This matrix encourages us to select boxes that are similar

based on the temporal similarity metric.

Intuitively, the boxes we select from each video Vi should respect the corresponding

graph Gi, in that the solution should follow a valid path through the graph from the

first frame to the last. For each edge (a, b) in the graph Gi, we define a binary variable

yi,a,b equal to 1 if both a and b are boxes containing the object and 0 otherwise. More
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precisely, we require y ∈ {0, 1} to follow the linear constraints for each video Vi and

every box bk (associated with binary label variable zk) in Vi: zk =
∑

l∈p(k) yi,l,k =∑
l∈c(k) yi,k,l, where p(k) and c(k) are the parents and children of box bk in the graph

Gi, respectively.

Model formulation. Combining the temporal terms and constraints together with

the original image model, we obtain the following optimization problem to select the

box containing the common object from each frame of video:

minimize
z,y

zT (L+ µA+ µtU)z − zTλ log(m) (6.4)

subject to z ∈ {0, 1}, y ∈ {0, 1},

∀Ij ∈ I :
m∑
k=1

zj,k = 1,

∀Vi ∈ V , ∀k ∈ Vi, zk =
∑
l∈p(k)

yi,l,k =
∑
l∈c(k)

yi,k,l,

where zi are the binary label variables associated with the boxes in video Vi, and µt

weights the temporal Laplacian matrix. The additional constraint forces us to choose

solutions that respect the edges defined by the underlying graphs for each video, and

the additional Laplacian term in the objective function weights these edges. Note

that the additional constraint is required to constrain our solutions, as the terms

in the objective from the image model can still lead us to select invalid paths if we

only had the temporal Laplacian matrix. This formulation allows us to incorporate

temporal consistency into the image model. In the rest of this chapter, we denote by

P the set of constraints defined in Equation 6.4.

In the next section, we present a tight convex relaxation which can be efficiently

optimized using the Frank-Wolfe algorithm [36].
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6.4 Optimization

A standard way of dealing with quadratic programs such as Equation 6.4 is to relax

the discrete non-convex set P to its convex hull, conv(P). Standard algorithms such

as interior point methods can be applied but leads to a complexity of O(N3) which

cannot deal with hundreds of videos. We show how it is possible to design an efficient

algorithm by using the specificities of our problem.

A key observation towards designing an efficient algorithm for our problem is that

the constraints defining the set P are separable in each video and are equivalent, for

each video, to the constraints used in the shortest-path algorithm. This means that

if our cost function was linear, we could solve our problem efficiently using dynamic

programming.

6.4.1 Frank-Wolfe Algorithm

Given a convex cost function f and a convex set D, the Frank-Wolfe algorithm [36]

finds the global minimum of f over D by solving a succession of linear problems [31,

55]. More precisely, at each iteration k it solves:

minimize
y

yT∇f(zk−1)

subject to y ∈ D. (6.5)

The solution yk is then used in Frank-Wolfe updates given by:

zk = zk−1 + λ(yk − zk−1), (6.6)

where λ > 0 is found using a line search (see Algorithm 1 for details). Essentially, the

Frank-Wolfe algorithm considers a linear approximation of the objective function at

each iteration. Although not appropriate for all convex optimization problems, Frank-

Wolfe applied to our optimization formulations results in very simple linearizations

with integer solutions that are easily solved.
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Frank-Wolfe algorithm on convex hull. This algorithm does not need an ex-

plicit form for D as long as it is possible to find the solution of a linear program over

D. This is particularly interesting when D is the convex hull of a set of points C on

which it is possible to solve an integer program. Solving a linear program on D is

then equivalent to solving an integer program over C. This is a particularity of the

Frank-Wolfe algorithm that we will exploit in our video setting.

Video model. For the video model, the Frank-Wolfe algorithm solves the following

problem at each iteration:

minimize
y

yTHzk−1 (6.7)

subject to y ∈ conv(P).

where H = L + µA + µtU . The cost function and constraints are separable for each

video, and optimizing Equation 6.7 results in the standard shortest path problem for

each video, which can be solved efficiently using dynamic programming.

Image Model. For the image model, the linearized cost function is separable for

each image, and we can efficiently find the best integer solution for this problem

by computing the score for each box, (L + µA)zk−1, and then simply selecting the

argmin. Note that in the case of images, it is possible to use a projected gradient

descent approach by projecting on the simplex. This approach is faster than ours but

cannot be generalized to videos, which is the main focus of this chapter.

Since the Frank-Wolfe algorithm for images utilizes the same framework as for

videos, an additional advantage is that we can easily learn a shared image/video

model with a single algorithm.

6.4.2 Implementation Details

In this section, we present some details on our implementation of the Frank-Wolfe

algorithm.
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Algorithm 1: Frank-Wolfe algorithm with away step and rounding.

Data: y0 ∈ D, ε > 0
Result: y∗

Initialization: k = 0, z = y0, S0 = {y0}, α0 = {1};
while duality gap(z) ≥ ε do

k ← k + 1;
yk ← argminy∈D〈y,∇f(z)〉 (FW direction);

xk ← argmaxy∈Sk−1
〈y,∇f(z)〉 (away direction);

if 〈yk − z,∇f(z)〉 ≤ 〈z − xk,∇f(z)〉 then
dk = yk − z;
γmax = 1;

else
dk = z − xk;
γmax = αk(xk);

Line search: γk = minγ∈[0,γmax] f(z + γdk);
Sk, αk ← update active set(dk, γk);
Update z ← z + γkdk;
if f(yk) < f(y∗) then

y∗ ← yk (rounding 1);

yr ← argmaxy∈D〈y, z〉 (rounding 2);

if f(yr) < f(y∗) then
y∗ ← yr (combining rounding);

Away step. We use an accelerated version termed Frank-Wolfe with away step [162].

The details of this algorithm are given in Algorithm 1. The algorithm keeps a set of

previously seen integer solutions (called active corners) Sk at each iteration such that

the current update z is the sum of the corners in Sk re-weighted by αk. The set Sk
is used to find potentially better directions by moving “away” from an active corner

(away step). This version of Frank-Wolfe has been shown to have better convergence

rates [45, 79].

Line seach and duality gap. In the case of a quadratic function, both the line

search and the duality gap are in closed form, which significantly improves the speed

of our algorithm [80].
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Parallel computation. Our constraints are separable for each image and video,

allowing efficient parallel computation of the update. Note that this is a property of

any first-order method, including the Frank-Wolfe algorithm. In practice, this allows

us to be extremely memory efficient, as we can consider subproblems for each image

or video separately.

Rounding. A typical concern with methods based on convex relaxations is obtain-

ing a solution from the relaxed problem that satisfies the non-convex constraints from

the original problem. In our case, the rounded solution must belong to the set P .

The most natural way of rounding a solution z is to find the closest element in P
given some distance. For the `2 distance, this means solving miny∈P ‖y − z‖22 which

is not possible in general. However, in our case, since the `2 norm is constant on P
(and equal to the total number of frames/images in the dataset), this projection is

equivalent to:

maximize
y∈P

〈y, z〉, (6.8)

which can be solved efficiently using the shortest-path algorithm for the video model,

and simply taking the argmax in each image for the image model.

Additionally, the particular form of the Frank-Wolfe updates offers another very

natural and inexpensive way of rounding our solution. We can keep track of the

solution to the linear problem defined in Equation 6.7 that minimizes the cost function

defined in Equation 6.4. Since this solution is in the original set P , it automatically

satisfies the constraints.

In practice, we use both rounding methods and keep the one that results in the

lowest value of our cost function, as shown in Algorithm 1.

6.5 Results

We perform experiments on two challenging datasets, the PASCAL VOC 2007

dataset [33] and the YouTube-Objects dataset [113]. We also combine the two and
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present results for joint image-video co-localization. Following previous works in

weakly supervised localization (WSL) [28, 40, 107, 131, 133–135] and co-localization [142],

we use the CorLoc evaluation metric, defined as the percentage of images correctly

localized according to the PASCAL-criterion: area(Bp∩Bgt)

area(Bp∪Bgt)
> 0.5, where Bp is the

predicted box and Bgt is the ground-truth box. All CorLoc results are given in per-

centages.

Implementation details. We set the parameters of our method by optimizing over

a small set of images/videos. For the image model, we set µ = 0.4 and for the video

model, we set µ = 0.6 and µt = 1.8. For both models, we found λ = 0.1 to perform

best. Unless otherwise stated, we extracted 20 objectness boxes from each image.

For the video model, we sampled each video every 10 frames, since there is typically

little change in such a short amount of time.

6.5.1 Running Time and Rounding Experiments

In this section, we evaluate the running time of our algorithm. Our implementation is

coded in MATLAB and we compare to two standard Quadratic Programming (QP)

solvers, Mosek and Gurobi, which are coded in C++. All experiments are done on a

single core 2.66GHz Intel CPU with 6GB of RAM.

Stopping criterion. Our stopping criterion is based on the relative duality gap

defined as d = (f−g)/g, where f is our cost function and g is its dual. We stop when

d is less than some ε > 0. We consider two values for ε, 10−2 and 10−3. The choice

of these values for ε is motivated by the empirical observation that our cost function

remains almost constant for d < 10−2, as show in Figure 6.4(a).

Running time analysis. In Figure 6.4(b)(c), we show how our algorithm scales in

the number of videos and images compared to standard QP solvers. For fair running

time comparison, we present the time for both standard QP solvers to reach a duality

gap less than ε = 10−2. When ε = 10−3, our algorithm runs 100 times faster than

standard solvers for more than 20 videos. For ε = 10−2, this factor increases to
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Figure 6.4: (a) Value of the cost function for 11 videos as a function of the relative
duality gap (log scale). Time comparison between our algorithm and standard QP
solvers (time in log scale of second) for (b) video co-localization and (c) image co-
localization. (d) Comparison of the value of the cost function obtained with our
algorithm and a standard QP solver.

more than 1000. Typically, for ε = 10−3, solving our problem with 50 videos takes 3

minutes, and 80 videos takes 7 minutes. The gain in speed is mostly due to efficiently

computed iterations based on a shortest path algorithm/argmin.

Rounding quality. In Figure 6.4(d), we also compare the quality of the solution

obtained after rounding in terms of the original cost function. We compare the relative

value of the cost function, (f − f ∗)/f ∗, where f ∗ is the minimum observed value of

the cost function. We round the solutions by solving Equation 6.8. For fairness of

comparison, we use the solution given by the QP solver for a tolerance of ε = 10−10.

Compared to the standard QP solver, our algorithm obtains a significantly better
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Number of objectness boxes [2] 5 10 15 20
Our method 23.96 24.23 24.28 24.59
Upper bound 51.04 62.22 67.99 71.58

Table 6.1: Average CorLoc results and upper bound on PASCAL07.

Method [121](w/ viewpoint) [28](w/ viewpoint) [135](w/o viewpoint) Our method(w/o viewpoint)
Average CorLoc 14 23 21.2 22

Table 6.2: CorLoc results on PASCAL07-all compared to previous methods for co-
localization.

rounded solution in terms of value of the cost function.

Despite numerous advantages of our solver for our specific problem, a limitation

of the Frank-Wolfe algorithm with away step in the case of an exponential number of

corner points (as is the case in our problem) is that it converges with no guarantee

of a linear convergence rate.

6.5.2 Image Co-localization: PASCAL VOC 2007

In [142], the authors show improved co-localization performance on PASCAL07-6x2,

a small subset of PASCAL VOC 2007 divided into specific viewpoints. To illustrate

the benefits of the Frank-Wolfe algorithm, which allows us to efficiently consider many

more images and boxes per image, we co-localize all images not labeled as difficult for

all classes in the PASCAL VOC 2007 dataset [33], which we denote as PASCAL07.

This makes the problem much more difficult as we now have to co-localize differing

viewpoints together and a much larger set of images. To emphasize the difference in

size, the “bicycle-right” class in the PASCAL07-6x2 dataset has the largest number of

images at 50, whereas the “person” class in the PASCAL07 dataset has 2,008 images.

In all experiments performed in [142], the authors only co-localize a maximum of

100 images at a time due to efficiency concerns. Results for our method varying the

number of extracted candidate boxes are given in Table 6.1, and visualizations are

shown in Figure 6.5. We also show the upper bound on the performance that can
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Method Our method (Co-localization) [133] (WSL) [135] (WSL) [134] (WSL) [131] (WSL) [40](WSL)
Average CorLoc 24.6 30.2 30.4 32.0 36.2 38.8

Table 6.3: CorLoc results on PASCAL07 compared to previous methods for weakly
supervised localization.

Figure 6.5: Example co-localization results on PASCAL07. From left-right, every two
images belong to the same class.

be achieved with the candidate boxes, computed by selecting the box in each image

with the highest CorLoc.

Number of candidate boxes. As we can see, the performance of our model in-

creases when we increase the number of candidate boxes. We can also see that the

upper bound becomes much better due to the better recall obtained with more boxes.

This helps to validate the importance of efficient methods for co-localization, as they

allow us to take advantage of more data in our model.

Comparisons to co-localization methods. We show results compared to previ-

ous co-localization methods in Table 6.2 for the PASCAL07-all dataset [28], which

does not consider the “bird”, “car”, “cat”, “cow”, “dog”, and “sheep” classes.
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Figure 6.6: Example co-localization results on YouTube-Objects for our video model
(green boxes) and our image model (red boxes). Each column corresponds to a
different class, and consists of frame samples from a single video.

For [135], we used their intra-only results for co-localization. Note that all previ-

ous methods except [135] utilize additional viewpoint annotations by dividing the

images for each class into separate viewpoints, and co-localizing each viewpoint sepa-

rately with viewpoint-specific priors. On the other hand, our method and [135] is run

on all of the viewpoints simultaneously, which is a much more difficult problem. Also,

comparing results on the entire PASCAL07 dataset in Table 6.1, we obtain 24.59%,

while [135] obtains 23.9%.

Comparisons to WSL methods. We also show our method compared to previous

WSL methods in Table 6.3 for the PASCAL07 dataset [28]. In the WSL scenario,

previous methods are also given negative data [28, 40, 107, 131, 133–135], whereas

our method is not. Here, we can see that although our method is able to work in

certain scenarios where there is an absence of negative data, there is still a large gap

in performance that can be obtained by utilizing negative data.

6.5.3 Video Co-localization: YouTube-Objects

The YouTube-Objects dataset [113] consists of YouTube videos collected for 10 classes

from PASCAL [33]: “aeroplane”, “bird”, “boat”, “car”, “cat”, “cow”, “dog”, “horse”,
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Method aeroplane bird boat car cat cow dog horse motorbike train Average

[113] 51.7 17.5 34.4 34.7 22.3 17.9 13.5 26.7 41.2 25.0 28.5
[109] 65.4 67.3 38.9 65.2 46.3 40.2 65.3 48.4 39.0 25.0 50.1

Our method (image) 18.36 19.35 28.57 32.97 32.77 25.68 38.26 30.14 15.38 21.43 26.29
Our method (image) w/ smoothing 21.26 21.51 30.95 36.26 35.29 25.68 38.26 35.62 15.38 23.21 28.34

Our method (video) 25.12 31.18 27.78 38.46 41.18 28.38 33.91 35.62 23.08 25.00 30.97

Table 6.4: CorLoc results for video co-localization on the YouTube-Objects dataset.

“motorbike”, “train”. For each class, bounding box annotations for the object are

annotated in one frame per shot for 100-290 different shots. We perform video co-

localization on all shots with annotations. Results are given in Table 6.4, where we

compare to the co-localization method of [113], our image model with and without

smoothing. Note that better results are obtained in [109] using unsupervised motion

segmentation and appearance consistency within each video, which works particu-

larly well for this dataset where objects of interest are moving. In contrast, our

method focuses on trying to leverage appearance information across different videos

in conjunction with temporal consistency.

Comparisons to [113]. From our results, we see that we outperform the previous

method of [113] for most classes. For most of the classes, we obtain results which are

slightly better than [113]. For the “aeroplane” and “motorbike” classes however, we

perform much worse. This is likely because the candidate tube extraction algorithm

used in [113] is able to effectively track simple and non-deformable objects. However,

note that our method is actually agnostic to the underlying candidate region gen-

eration algorithm, and we could easily replace our objectness boxes with candidate

tubes.

Comparisons to [109]. It is interesting to see that our performance is worse

than [109]. In their method, they do not learn a model between the videos and in-

stead use a novel unsupervised motion segmentation method. A possible explanation

for this difference in performance is the size of the database: the YouTube-Objects

dataset is relatively small and the intra-class variation is relatively high (in particular

for “aeroplane”). It is thus hard to learn a common model across videos.



CHAPTER 6. CO-LOCALIZATION II: EFFICIENT IMAGE AND VIDEO 94

Method aeroplane bird boat car cat cow dog horse motorbike train Average

Video only 25.12 31.18 27.78 38.46 41.18 28.38 33.91 35.62 23.08 25.00 30.97
Joint Image+Video 27.54 33.33 27.78 34.07 42.02 28.38 35.65 35.62 21.98 25.00 31.14

Table 6.5: CorLoc results for joint image-video co-localization on the YouTube-
Objects dataset.

Comparisons to image model. Our video model outperforms the image model,

which illustrates the importance of leveraging temporal consistency. From the visu-

alizations in Figure 6.6, we see that the image model often jumps around throughout

a single video. For the “dog” class however, our image model actually performs much

better than our video model. This is likely due to large amounts of sporadic move-

ment in the “dog” videos caused by both camera movement and object movement.

The simple similarity metric we use for temporal consistency may not be invariant

to such difficult types of motion, and thus the image model is able to perform better

in this case. As noted previously, we can substitute any similarity metric into our

framework, and thus potentially take advantage of methods in object tracking [4, 8,

46, 108, 112, 170] to further improve performance.

6.5.4 Joint Image-Video Co-localization

Since the classes in the YouTube-Objects dataset are a subset of the PASCAL07

classes, we can combine the images from the corresponding classes in PASCAL07 with

the videos in YouTube-Objects to perform joint image-video co-localization. Results

for CorLoc performance on the YouTube-Objects dataset are given in Table 6.5. We

can see that our performance increases slightly for several classes, such as “aeroplane”,

“bird”, “cat” and “dog”. It is not unexpected that performance becomes worse for

several classes, as there is an inherent domain adaptation problem between images

and videos [113, 143]. However, our preliminary results show that with efficient

algorithms for image and video co-localization, the problem of jointly considering the

two domains is viable, and may present an effective way of taking advantage of all

the weakly labeled data available.
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6.6 Summary

In this chapter, we introduce a formulation for video co-localization that is able to nat-

urally incorporate temporal consistency in a quadratic programming framework. In

addition, we show how the image and video co-localization models that are presented

can be efficiently optimized using the Frank-Wolfe algorithm. Our experiments on

the PASCAL07 and YouTube-Objects datasets illustrate the benefits of our approach

for image, video, and joint image-video co-localization.



Chapter 7

Learning Temporal Embeddings

for Complex Video Analysis

7.1 Introduction

Video data is plentiful and a ready source of information – what can we glean from

watching massive quantities of videos? At a fine granularity, consecutive video frames

are visually similar due to temporal coherence. At a coarser level, consecutive video

frames are visually distinct but semantically coherent.

Learning from this semantic coherence present in video at the coarser-level is the

main focus of this chapter. Purely from unlabeled video data, we aim to learn em-

beddings for video frames that capture semantic similarity by using the temporal

structure in videos. The prospect of learning a generic embedding for video frames

holds promise for a variety of applications ranging from generic retrieval and sim-

ilarity measurement, video recommendation, to automatic content creation such as

summarization or collaging. In this chapter, we demonstrate the utility of our video

frame embeddings for several tasks such as video retrieval, classification and temporal

order recovery.

The idea of leveraging sequential data to learn embeddings in an unsupervised

fashion is well explored in the Natural Language Processing (NLP) community. In

particular, distributed word vector representations such as word2vec [95] have the

96
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Figure 7.1: The temporal context of a video frame is crucial in determining its true
semantic meaning. The middle frame from the two wedding videos correspond to
visually dissimilar classes of “church ceremony” and “court ceremony”. However, by
observing the similarity in their temporal contexts we expect them to be semantically
closer.

unique ability to encode regularities and patterns surrounding words, using large

amounts of unlabeled data. In the embedding space, this brings together words that

may be very different, but which share similar contexts in different sentences. This

is a desirable property we would like to extend to video frames as well as shown

in Figure 7.1. We would like to have a representation for frames which captures

the semantic context around the frame beyond the visual similarity obtained from

temporal coherence.

However, the task of embedding frames poses multiple challenges specific to the

video domain: 1. Unlike words, the set of frames across all videos is not discrete

and quantizing the frames leads to a loss in information; 2. Temporally proximal

frames within the same video are often visually similar and might not provide useful

contextual information; 3. The correct representation of context surrounding a frame
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is not obvious in videos. The main contribution of our work is to propose a new

ranking loss based embedding framework, along with a contextual representation

specific to videos. We also develop a well engineered data augmentation strategy to

promote visual diversity among the context frames used for embedding.

We evaluate our learned embeddings on the standard tasks of video event retrieval

and classification on the TRECVID MED 2011 [106] dataset, and compare to several

recently published spatial and temporal video representations [54, 132]. Aside from

semantic similarity, the learned embeddings capture valuable information in terms of

the temporal context shared between frames. Hence, we also evaluate our embeddings

on two related tasks: 1. temporal frame retrieval, and 2. temporal order recovery in

videos. Our embeddings improve performance on all tasks, and serves as a powerful

representation for video frames.

7.2 Related Work

Video features. Standard tasks in video such as classification and retrieval require

a well engineered feature representation, with many proposed in the literature [23,

56, 61, 83, 100, 102, 105, 110, 122, 157, 158]. Deep network features learned from

spatial data [58, 67, 132] and temporal flow [132] have also shown comparable re-

sults. However, recent works in complex event recognition [166, 175] have shown that

spatial Convolutional Neural Network (CNN) features learned from ImageNet [26]

without fine-tuning on video, accompanied by suitable pooling and encoding strate-

gies achieves state-of-the-art performance. In contrast to these methods which either

propose handcrafted features or learn feature representations with a fully supervised

objective from images or videos, we try to learn an embedding in an unsupervised

fashion. Moreover, our learned features can be extended to other tasks beyond clas-

sification and retrieval.

There are several works which improve complex event recognition by combining

multiple feature modalities [60, 97, 140]. Another related line of work is the use of

sub-events defined manually [54], or clustered from data [81] to improve recognition.

Similarly, Yang et al. used low dimensional features from deep belief nets and sparse
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coding [169]. While these methods are targeted towards building features specifically

for classification in limited settings, we propose a generic video frame representation

which can capture semantic and temporal structure in videos.

Unsupervised learning in videos. Learning features with unsupervised objec-

tives has been a challenging task in the image and video domain [57, 85, 147]. Notably,

[85] develops an Independent Subspace Analysis (ISA) model for feature learning us-

ing unlabeled video. Recent work from [43] also hints at a similar approach to exploit

the slowness prior in videos. Also, recent attempts extend such autoencoder tech-

niques for next frame prediction in videos [117, 139]. These methods try to capitalize

on the temporal continuity in videos to learn an LSTM [174] representation for frame

prediction. In contrast to these methods which aim to provide a unified represen-

tation for a complete temporal sequence, our work provides a simple yet powerful

representation for independent video frames and images.

Embedding models. The idea of embedding words to a dense lower dimension

vector space has been prevalent in the NLP community. The word2vec model [95]

tries to learn embeddings such that words with similar contexts in sentences are

closer to each other. A related idea in computer vision is the embedding of text in

the semantic visual space attempted by [37, 72] based on large image datasets labeled

with captions or class names. While these methods focus on different scenarios for

embedding text, the aim of our work is to generate an embedding for video frames.

7.3 Our Method

Given a large collection of unlabeled videos, our goal is to leverage their temporal

structure to learn an effective embedding for video frames. We wish to learn an

embedding such that the context frames surrounding each target frame can determine

the representation of the target frame, similar to the intuition from word2vec [95].

For example, in Figure 7.1, context such as “crowd” and “cutting the cake” provides

valuable information about the target “ceremony” frames that occur in between. This
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idea is fundamental to our embedding objective and helps in capturing semantic and

temporal interactions in video.

While the idea of representing frames by embeddings is lucrative, the extension

from language to visual data is not straightforward. Unlike language we do not

have a natural, discrete vocabulary of words. This prevents us from using a softmax

objective as in the case of word2vec [95]. Further, consecutive frames in videos often

share visual similarity due to temporal coherence. Hence, a naive extension of [95]

does not lead to good vector representations of frames.

To overcome the problem of lack of discrete words, we use a ranking loss which

explicitly compares multiple pairs of frames across all videos in the dataset. This

ensures that the context in a video scores the target frame higher than others in the

dataset. We also handle the problem of visually similar frames in temporally smooth

videos through a carefully designed sampling mechanism. We obtain context frames

by sampling the video at multiple temporal scales, and choosing hard negatives from

the same video.

7.3.1 Embedding objective

We are given a collection of videos V , where each video v ∈ V is a sequence of

frames {sv1, . . . , svn}. We wish to obtain an embedding fvj for each frame svj. Let

fvj = f(svj;We) be the temporal embedding function which maps the frame svj to

a vector. The model embedding parameters are given by We, and will be learned by

our method. We embed the frames such that the context frames around the target

frame predict the target frame better than other frames. The model is learned by

minimizing the sum of objectives across all videos. Our embedding loss objective is

shown below:

J(We) =
∑
v∈V

∑
svj∈v
s− 6=svj

max (0, 1− (fvj − f−) · hvj) , (7.1)
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Figure 7.2: Visualizations of the temporal context of frames used in: (a) our model
(full), (b) our model (no future), and (c) our model (no temporal). Green boxes
denote target frames, magenta boxes denote contextual frames, and red boxes denote
negative frames.

where f− is the embedding of a negative frame s−, and the context surrounding

the frame svj is represented by the vector hvj. Note that unlike the word vector

embedding models in word2vec [95], we do not use an additional linear layer for

softmax prediction on top of the context vector.

7.3.2 Context representation

As we verify later in the experiments, the choice of context is crucial to learning good

embeddings. A video frame at any time instant is semantically correlated with both

past and future frames in the video. Hence, a natural choice for context representa-

tion would involve a window of frames centered around the target frame, similar to

the skip-gram idea used in word2vec [95]. Along these lines, we propose a context

representation given by the average of the frame embeddings around the target frame.

Our context vector hvj for a frame svj is:
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hvj =
1

2T

T∑
t=1

fvj+t + fvj−t, (7.2)

where T is the window size, and fvj is the embedding of the frame svj. This embedding

model is shown in Figure 7.2(a). For negatives, we use frames from other videos as well

as frames from the same video which are outside the temporal window, as explained

in Sec. 7.3.4.

Two important characteristics of this context representation is that it 1. makes use

of the temporal order in which frames occur and 2. considers contextual evidence from

both past and future. In order to examine their effect on the quality of the learned

embedding, we also consider two weaker variants of the context representation below.

Our model (no future). This one-sided contextual representation tries to predict

the embedding of a frame in a video only based on the embeddings of frames from

the past as shown in Figure 7.2(b). For a frame svj, the context hnofuturevj is given by:

hnofuturevj =
1

T

T∑
t=1

fvj−t, (7.3)

where T is the window size.

Our model (no temporal). An even weaker variant of context representation is

simple co-occurrence without temporal information. We also explore a contextual

representation which completely neglects the temporal ordering of frames and treats

a video as a bag of frames. The context hnotempvj for a target frame svj is sampled from

the embeddings corresponding to all other frames in the same video:

hnotempvj ∈ {fvk | k 6= j}. (7.4)
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This contextual representation is visualized in Figure 7.2(c).

7.3.3 Embedding function

In the previous sections, we introduced a model for representing context, and now

move on to discuss the embedding function f(sij;We). In practice, the embedding

function can be a CNN built from the frame pixels, or any underlying image or

video representation. However, following the recent success of ImageNet trained CNN

features for complex event videos [166, 175], we choose to learn an embedding on

top of the fully connected fc6 layer feature representation obtained by passing the

frame through a standard CNN [74] architecture. We use a simple model with a

fully connected layer followed by a rectified linear unit (ReLU) and local response

normalization (LRN) layer, with dropout regularization. In this architecture, the

learned model parameters We correspond to the weights and bias of our affine layer.

7.3.4 Data augmentation

We found that a careful strategy for sampling context frames and negatives is impor-

tant to learning high quality embeddings in our models. This helps both in handling

the problem of temporal smoothness and prevents the model from overfitting to less

interesting video-specific properties.

Multi-resolution sampling. Complex events progress at different paces within

different videos. Densely sampling frames in slowly changing videos can lead to

context windows comprised of frames that are visually very similar to the target

frame. On the other hand, a sparse sampling of fast videos could lead to context

windows only composed of disjoint frames from unrelated parts of the video. We

overcome these problems through multi-resolution sampling as shown in Figure 7.3.

For every target frame, we sample context frames from multiple temporal resolutions.

This ensures a good trade-off between visual variety and semantic relatedness in the

context windows.
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Figure 7.3: Multi-resolution sampling and hard negatives used in our full context
model (T = 1). For a target frame (green), we sample context frames (magenta) at
varying resolutions, as shown by the rows in this figure. We take hard negatives as
examples in the same video that fall outside the context window (red).

Hard negatives. The context frames, as well as the target to be scored are chosen

from the same video. This causes the model to cluster frames from the same video

based on less interesting video-specific properties such as lighting, camera character-

istics and background, without learning anything semantically meaningful. We avoid

such problems by choosing hard negatives from within the same video as well. Empir-

ically, this improves performance for all tasks. The negatives are chosen from outside

the range of the context window within a video as depicted in Figure 7.3.

7.3.5 Implementation details

The context window size was set to T = 2, and the embedding dimension to 4096.

The learning rate was set to 0.01 and gradually annealed in steps of 5000. The

training is typically completed within a day on 1 GPU with Caffe [59] for a dataset

of approximately 40000 videos. All videos were first down-sampled to 0.2 fps before

training. The embedding code as well as the learned models and video embeddings

will be made publicly available upon publication.
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7.4 Experimental Setup

Our embeddings are aimed at capturing semantic and temporal interactions within

complex events in a video, and thus we require a generic set of videos with a good

variety of actions and sub-events within each video. Most standard datasets such as

UCF-101 [138] and Sport-1M [67] are comprised of short video clips capturing a single

sports action, making them unsuitable for our purpose. Fortunately, the TRECVID

MED 2011 [106] dataset provides a large set of diverse videos collected directly from

YouTube. More importantly, these videos are not simple single clip videos; rather

they are complex events with rich interactions between various sub-events within the

same video [54]. Specifically, we learn our embeddings on the complete MED11 DEV

and TEST sets comprised of 40021 videos. A subset of 256 videos from the DEV

and TEST set was used for validation. The DEV and TEST sets are typical random

assortments of YouTube videos with minimal constraints.

We compare our embeddings against different video representations for three video

tasks: video retrieval, complex event classification, and temporal order recovery. All

experiments are performed on the MED11 event kit videos, which are completely

disjoint from the training and validation videos used for learning our embeddings.

The event kit is composed of 15 event classes with approximately 100 − 150 videos

per event, with a total of 2071 videos.

We stress that the embeddings are learned in a completely unsupervised setting

and capture the temporal and semantic structure of the data. We do not tune them

specifically to any event class and ∼ 0.3% of the DEV and TEST sets contain videos

from each category. This is not unreasonable, since any large unlabeled video dataset

is expected to contain a small fraction of videos from every event.

7.5 Video Retrieval

In retrieval tasks, we are given a query, and the goal is to retrieve a set of related

examples from a database. We start by evaluating our embeddings on two types

of retrieval tasks: event retrieval and temporal retrieval. The retrieval tasks help to
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evaluate the ability of our embeddings to group together videos belonging to the same

semantic event class and frames that are temporally coherent.

7.5.1 Event retrieval

In the event retrieval scenario, we are given a query video from the MED11 event

kit and our goal is to retrieve videos that contain the same event from the remaining

videos in the event kit. For each video in the event kit, we sort all other videos in the

dataset based on their similarity to the query video using the cosine similarity metric,

which we found to work best for all representations. We use Average Precision (AP)

to measure the retrieval performance of each video and provide the mean Average

Precision (mAP) over all videos in Table 7.1. For all methods, we uniformly sample

4 frames per video and represent the video as an average of the features extracted

from them. The different baseline methods used for comparison are explained below:

• Two-stream pre-trained : We use the two-stream CNN from [132] pre-trained on

the UCF-101 dataset. The models were used to extract spatial and temporal

features from the video with a temporal stack size of 5.

• fc6 and fc7 : Features extracted from the ReLU layers following the corre-

sponding fully connected layers of a standard CNN model [74] pre-trained on

ImageNet.

• Our model (no temporal): Our model trained with no temporal context (Fig-

ure 7.2(c)).

• Our model (no future): Our model trained with no future context (Fig-

ure 7.2(b)) but with multi-resolution sampling and hard negatives.

• Our model (no hard neg.): Our model trained without hard negatives from the

same video.

• Our model : Our full model trained with multi-resolution sampling and hard

negatives.
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Method mAP ( %)

Two-stream pre-trained [132] 20.09
fc6 20.08
fc7 21.24

Our model (no temporal) 21.92
Our model (no future) 21.30
Our model (no hard neg.) 24.22

Our model 25.07

Table 7.1: Event retrieval results on the MED11 event kits.

We observe that our full model outperforms other representations for event re-

trieval. We note that in contrast to most other representations trained on ImageNet,

our model is capable of being trained with large quantities of unlabeled video which

is easy to obtain. This confirms our hypothesis that learning from unlabeled video

data can improve feature representations. While the two-stream model also has the

advantage of being trained specifically on a video dataset, we observe that the learned

representations do not transfer favorably to the MED11 dataset in contrast to fc7 and

fc6 features trained on ImageNet. A similar observation was made in [166, 175], where

simple CNN features trained from ImageNet consistently provided the best results.

Our embeddings capture the temporal regularities and patterns in videos with-

out the need for expensive labels, which allows us to more effectively represent the

semantic space of events. The performance gain of our full context model over the

representation without temporal order shows the need for utilizing the temporal in-

formation while learning the embeddings.

Visualizing the embedding space. To gain a better qualitative understanding

of our learned embedding space, we use t-SNE [94] to visualize the embeddings in a

2D space. In Figure 7.4, we visualize the fc7 features and our embedded features by

sampling a random set of videos from the event kits. The different colors in the graph

correspond to each of the 15 different event classes, as listed in the figure. Visually, we

can see that certain event classes such as “Grooming an animal”, “Changing a vehicle

tire”, and “Making a sandwich” enjoy better clustering in our embedded framework
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Figure 7.4: t-SNE plot of the semantic space for (a) fc7 and (b) our embedding. The
different colors correspond to different events.

as opposed to the fc7 representation.

Another way to visualize this space is in terms of the actual words used to describe

the events. Each video in the MED11 event kits is associated with a short synopsis

describing the video. We represent each word from this synopsis collection by averag-

ing the embeddings of videos associated with that word. The features are then used to

produce a t-SNE plot as shown in Figure 7.5. We avoid noisy clustering due to simple

co-occurrence of words by only plotting words which do not frequently co-occur in

the same synopsis. We observe many interesting patterns. For instance, objects such

as “river”, “pond” and “ocean” which provide the same context for a “fishing” event

are clustered together. Similarly crowded settings such as “bollywood”, “military”,

and “carnival” are clustered together. This provides a visual clustering of the words

based on shared semantic temporal context.

Event retrieval examples. We visualize the top frames retrieved for a few query

frames from the event kit videos in Figure 7.6. The query frame is shown in the
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Figure 7.5: t-SNE visualization of words from synopses describing MED11 event kit
videos. Each word is represented by the average of our embeddings corresponding to
the videos associated with the word.

first column along with the event class corresponding to the video. The top 2 frames

retrieved from other videos by our embedding and by fc7 are shown in the first and

second columns for each query video, respectively.

We observe a few interesting examples where the query appears visually distinct

from the results retrieved by our embedding. These can be explained by noting

that the retrieved actions might co-occur in the same context as the query, which is

captured by the temporal context in our model. For instance, the frame of a “bride

near a car” retrieves frames of “couple kissing”. Similarly, the frame of “kneading

dough” retrieves frames of “spreading butter”.
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Figure 7.6: The retrieval results for fc7 (last two columns) and our embedding (middle
two columns). The first column shows the query frame and event, while the top 2
frames retrieved from the remaining videos are shown in the middle two column for
our embedding, and the last two columns for fc7. The incorrect frames are highlighted
in red, and correct frames in green.

7.5.2 Temporal retrieval

In the temporal retrieval task, we test the ability of our embedding to capture the

temporal structure in videos. We sample four frames from different time instants in

a video and try to retrieve the frames in between the middle two frames. This is an

interesting task which has potential for commercial applications such as ad placements

in video search engines. For instance, the context at any time instant in a video can

be used to retrieve the most suited video ad from a pool of video ads, to blend into

the original video.

For this experiment, we use a subset of 1396 videos from the MED11 event kits

which are at least 90 seconds long. From each video, we uniformly sample 4 context
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Method mAP ( %)

Two-stream pre-trained [132] 20.11
fc6 19.27
fc7 22.99

Our model (no temporal) 22.50
Our model (no future) 21.71
Our model (no hard neg.) 24.12

Our model 26.74

Table 7.2: Temporal retrieval results on the MED11 event kits.

frames, 3 positive frames from in between the middle two context frames, and 12

negative distractors from the remaining segments of the video. In addition to the 12

negative distractors from the same video, all frames from other videos are also treated

as negative distractors. For each video, given the 4 context frames we evaluate our

ability to retrieve the 3 positive frames from this large pool of distractors.

We retrieve frames based on their cosine similarity to the average of the features

extracted from the context frames, and use mean Average Precision (mAP) as before.

We use the same baselines as the event retrieval task. The results are shown in

Table 7.2.

Our embedding representation which is trained to capture temporal structure in

videos is seen to outperform the other representations. This also shows their ability

to capture long-term interactions between events occurring at different instants of a

video.

Temporal retrieval examples. We visualize the top examples retrieved for a few

temporal queries in Figure 7.7. Here, we can see just how difficult this task is, as

often frames that seem to be viable options for temporal retrieval are not part of

the ground truth. For instance, in the “sandwich” example, our embedding wrongly

retrieves frames of human hands to keep up with the temporal flow of the video.
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time

Missing frame at (t3) retrieved by our embedding(t1) (t2) (t4) (t5)

Figure 7.7: The retrieval results for our embedding model on the temporal retrieval
task. The first and last 2 columns show the 4 context frames sampled from each video,
and the middle 3 columns show the top 3 frames retrieved by our embedding. The
correctly retrieved frames are highlighted in green, and incorrect frames highlighted
in red.

Method mAP ( %)

Two-stream fine-tuned [132] 62.99
ISA [85] 55.87
Izadinia et al. [54] linear 62.63
Izadinia et al. [54] full 66.10
Raman. et al. [116] 66.39
fc6 68.56
fc7 69.17

Our model (no temporal) 69.57
Our model (no future) 69.22
Our model (no hard neg.) 69.81

Our model 71.17

Table 7.3: Event classification results on the MED11 event kits.

7.6 Complex Event Classification

The complex event classification task on the MED11 event kits is one of the more

challenging classification tasks. We follow the protocol of [54, 116] and use the same

train/test splits. Since the goal of our work is to evaluate the effectiveness of video

frame representations, we use a simple linear Support Vector Machine classifier for

all methods.
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officiant’s address exchanging vows exchanging rings 

couple kissing cutting wedding cake wedding dance 

wedding images Image clusters ordered with our embedding Figure 7.8: After querying the Internet for images of the “wedding” event, we cluster
them into sub-events and temporally organize the clusters using our model.

Unlike retrieval settings, we are provided labeled training instances in the event

classification task. Thus, we fine-tune the last two layers of the two-stream model

(pre-trained on UCF-101) on the training split of the event kits, and found this to

perform better than the pre-trained model.

In addition to baselines from previous tasks, we also compare with [54], [85] and

[116], with results shown in Table 7.3. Note that [54, 116] use a combination of

multiple image and video features including SIFT, MFCC, ISA, and HOG3D. Further,

they also use additional labels such as low-level events within each video. In Table 7.3,

Izadinia et al. linear refers to the results without low-level event labels.

We observe that our method outperforms ISA [85], which is also a unsupervised

neural network feature representation. Additionally, the CNN features trained from

ImageNet seem to perform better than most previous feature representations, which

is also consistent with the retrieval results and previous work [166, 175]. Among

the methods, the two-stream model holds the advantage of being fine-tuned to the

MED11 event kits. However, our performance gain could be attributed to the ability

of our model to use large amounts of unlabeled data to learn a better representations.
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HVC465414 (our: 0.3030, fc7: 0.6061)

(a) order recovered by fc7

(b) order recovered by our embedding

1 2 3 4 56

4 5 6 1 23

Figure 7.9: An example of the temporal ordering retrieved by fc7 and our method
for a “Making a sandwich” video. The indexes of the frames already in the correct
temporal order are shown in green, and others in red.

7.7 Temporal Order Recovery

An effective representation for video frames should be able to not only capture visual

similarities, but also preserve the structure between temporally coherent frames. This

facilitates holistic video understanding tasks beyond classification and retrieval. With

this in mind, we explore the video temporal order recovery task, which seeks to show

how the temporal interaction between different parts of a complex event are inherently

captured by our embedding.

In this task, we are given as input a jumbled sequence of frames belonging to a

video, and our goal is to order the frames into the correct sequence. This has been

previously explored in the context of photostreams [70], and has potential for use in

applications such as album generation.

Solving the order recovery problem. Since our goal is to evaluate the effective-

ness of various feature representations for this task, we use a simple greedy technique

to recover the temporal order. We assume that we are provided the first two frames in

the video and proceed to retrieve the next frame (third frame) from all other frames
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Method 1.4k Videos 1k Videos

Random chance 50.00 50.00
Two-stream [132] 42.05 44.18
fc6 42.43 43.33
fc7 41.67 43.15

Our model (pairwise) 42.03 43.72
Our model (no future) 40.91 42.98
Our model (no hard neg.) 41.02 41.95

Our model 40.41 41.13

Table 7.4: Video temporal order recovery results on the MED11 event kits evaluated
using the Kendell tau distance (normalized to 0-100).

in the video. This is done by averaging the first two frames and retrieving the closest

frame in cosine similarity. We go on to greedily retrieve the fourth frame using the

average of the second and third frames, and continue until all frames are retrieved.

In order to enable easy comparison across all videos, we sample the same number of

frames (12) from each video before scrambling them for the order recovery problem.

An example comparing our embeddings to fc7 is show in Figure 7.9.

Evaluation. We evaluate the performance for solving the order recovery problem

using the Kendall tau [69] distance between the groundtruth sequence of frames and

the sequence returned by the greedy method. The Kendall tau distance is a metric

that counts the number of pairwise disagreements between two ranked lists; the larger

the distance the more dissimilar the lists. The performance of different features for

this task is shown in Table 7.4, where the Kendall tau distance is normalized to be

in the range 0− 100.

Similar to the temporal retrieval setting, we use the subset of 1396 videos which

are at least 90 seconds long. These results are reported in the first column of the

table. We observed that our performance was quite comparable to that of fc7 features

for videos with visually similar frames like those from the “parade” event, as they

lack interesting temporal structure. Hence, we also report results on the subset of

1000 videos which had the most visually distinct frames. These results are shown in
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the second column of the table. We also evaluated the human performance of this

task on a random subset of 100 videos, and found the Kendell tau to be around 42.

This is on par with the performance of the automatic temporal order produced by

our methods, and illustrates the difficulty of this task for humans as well.

We observe that our full context model trained with a temporal objective achieves

the best Kendall tau distance. This improvement is more marked in the case of the

1k Videos with more visually distinct frames. This shows the ability of our model

to bring together sequences of frames that should be temporally and semantically

coherent.

Ordering actions on the Internet. Image search on the Internet has improved to

the point where we can find relevant images with textual queries. Here, we wanted to

investigate whether or not we could also temporally order images returned from the

Internet for textual queries that involve complex events. To do this, we used query

expansion on the “wedding” query, and crawled Google for a large set of images.

Then, based on the queries, we clustered the images into sets of semantic clusters, and

for each cluster, averaged our embedding features to obtain a representation for the

cluster. With this representation, we then used our method to recover the temporal

ordering of these clusters of images. In Figure 7.8, we show the temporal ordering

automatically recovered by our embedded features, and some example images from

each cluster. Interestingly, the recovered order seems consistent with typical wedding

scenarios.

7.8 Summary

In this chapter, we presented a model to embed video frames. We treated videos as

sequences of frames and embedded them in a way which captures the temporal context

surrounding them. Our embeddings were learned from a large collection of more than

40000 unlabeled videos, and have shown to be more effective for multiple video tasks.

The learned embeddings performed better than other video frame representations for

all tasks. The main thrust of our work is to push a framework for learning frame-level
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representations from large sets of unlabeled video, which can then be used for a wide

range of generic video tasks.



Chapter 8

Conclusions and Future Directions

8.1 Conclusions

This thesis has focused on the problem of visual learning with weakly labeled video.

In particular, we have addressed several standard problems, such as video classifi-

cation, object localization, and video representation. While typical approaches to

these problems usually involve utilizing laborious annotations, we are able to take

advantage of the abundance and diversity of visual data available on the Internet by

developing approaches that can effectively learn from weakly labeled video.

In Chapter 2, we addressed the problem of complex event recognition in weakly

labeled video. We introduced a model for learning the latent temporal structure of

complex events in weakly labeled Internet videos that are not temporally localized.

Our model is simple, and lends itself to fast, exact inference, which allows us to

process large numbers of videos efficiently. In addition, we trained our model in a

discriminative, max-margin fashion and are able to achieve competitive accuracies on

activity recognition and event detection tasks. We also showed examples of semantic

structure that our model is able to automatically extract.

In Chapters 3, 4, 5, and 6, we addressed the problem of object localization in

weakly labeled images and video. In Chapter 3, we introduced an approach for adapt-

ing object detectors from image to video that discovers robust examples in weakly

labeled video data using feature tracks. We introduced a novel self-paced domain

118
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adaptation algorithm to iteratatively adapt to these discovered examples that is si-

multaneously able to consider target features unique to the video domain. In Chapter

4, we introduced CRANE, a simple yet effective algorithm for annotating spatiotem-

poral segments in weakly labeled videos, and presented a generalized interpretation

based on the distance matrix that serves as a taxonomy for weakly supervised meth-

ods. In Chapters 5 and 6, we focused on the problem of co-localization in both images

and video, and introduced a method that combines terms for the prior, similarity, and

discriminability of images and boxes into a joint optimization problem. Further, we

showed how the method is able to account for noisy images with incorrect anntations,

and naturally incorporate temporal consistency in the form of temporal terms and

constraints.

In Chapter 7, we addressed the problem of learning temporal embeddings from

weakly labeled video. Here, we took advantage of the implicit weak label that videos

are sequences of temporally and semantically coherent images. Using this intuition,

we formulated an objective that learns temporal embeddings for frames of video by

associating frames with the temporal context that they appear in. We then showed

how these embeddings are able to capture semantic context, resulting in better per-

formance for a wide variety of standard tasks in video.

8.2 Future directions

8.2.1 Weakly supervised object localization

In Chapters 3, 4, 5, and 6, we addressed the problem of weakly supervised object

localization from various perspectives. These include adapting object detectors to

video [143], using only negative weakly labeled data [144], and using only positive

weakly labeled data [66, 142]. Each of the proposed methods/scenarios incurs different

tradeoffs between factors such as runtime complexity, accuracy, and parallelization,

and incorporating these approaches into a joint framework with the right balance

between these tradeoffs is a possible direction for future work. In addition, simplifying

the problem by supplementing the algorithms with small amounts of labeled data
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is also an alternative direction worth exploring that could potentially yield large

improvements in accuracy.

8.2.2 Multimodal video understanding

In Chapters 2 and 7, we looked at how leveraging temporal consistency in video could

be used to improve tasks that only have access to weakly labeled video. However,

there are also several other multimodal dimensions to video data that could be lever-

aged, including modalities such as audio, and metadata such as social and location

information. Using these modalities to help improve weakly supervised video classifi-

cation is a possible direction for future work. Learning embeddings that can capture

the interactions between these modalities using large amounts of weakly labeled video

could also be a potential direction worth exploring.
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