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Abstract. Much recent research in human activity recognition has fo-
cused on the problem of recognizing simple repetitive (walking, running,
waving) and punctual actions (sitting up, opening a door, hugging). How-
ever, many interesting human activities are characterized by a complex
temporal composition of simple actions. Automatic recognition of such
complex actions can benefit from a good understanding of the tempo-
ral structures. We present in this paper a framework for modeling mo-
tion by exploiting the temporal structure of the human activities. In our
framework, we represent activities as temporal compositions of motion
segments. We train a discriminative model that encodes a temporal de-
composition of video sequences, and appearance models for each motion
segment. In recognition, a query video is matched to the model according
to the learned appearances and motion segment decomposition. Classi-
fication is made based on the quality of matching between the motion
segment classifiers and the temporal segments in the query sequence. To
validate our approach, we introduce a new dataset of complex Olympic
Sports activities. We show that our algorithm performs better than other
state of the art methods.
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1 Introduction

We argue that to understand motion, it is critical to incorporate temporal con-
text information, particularly the temporal ordering of the movements. In this
paper, we propose a simple discriminative framework for classifying human ac-
tivities by aggregating information from motion segments that are considered
both for their visual features as well as their temporal composition. An input
video is automatically decomposed temporally into motion segments of variable
lengths. The classifier selects a discriminative decomposition and combination
of the segments for matching. Though simple in its form, we highlight a couple
of advantages of our framework compared to the previous work.

First, depending on the time scale of the movement, actions have been tra-
ditionally grouped into: short but punctual actions (e.g. drink, hug), simple but
periodic actions (e.g. walking, boxing), and more complex activities that are
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considered as a composition of shorter or simpler actions (e.g. a long jump,
cooking). Very different algorithms have been proposed for these different types
of motion, most of them take advantage of the special properties within its do-
main, hence perform rather poorly on other types. Our framework is a general
one. No matter how simple or complex the motion is, our classifier relies on a
temporal composition of various motion segments. Our basic philosophy is clear:
temporal information helps action recognition at all time scales.

On the other hand, we note that some work has taken the approach of de-
composing actions into “hidden states” that correspond to meaningful motion
segments (i.e. HMM’s, HCRF’s, etc.). In contrast, we let the model automati-
cally discover a robust combination of motion segments that improve the dis-
criminability of the classifier. The result is a much simpler model that does not
unnecessarily suffer from the difficult intermediate recognition step.

In order to test the efficacy of our method, we introduce a new dataset
that focuses on complex motions in Olympic Sports, which can be difficult to
discriminate without modeling the temporal structures. Our algorithm shows
very promising results.

The rest of the paper is organized as follows. Section 1.1 overviews some of the
related work. Section 2 describes a video representation that can be employed in
conjunction with our model. Section 3 presents our model for capturing temporal
structures in the data. We present experimental validation in Section 4 and
conclude the paper in Section 5.

1.1 Related Work

A considerable amount of work has studied the recognition of human actions in
video. Here we overview a few related work but refer the reader to [1, 2] for a
more complete survey.

A number of approaches have adopted the bag of spatio-temporal interest
points [3] representation for human action recognition. This representation can
be combined with either discriminative [4, 5] classifiers, semi-latent topic models
[6] or unsupervised generative [7, 8] models. Such holistic representation of video
sequences ignores temporal ordering and arrangement of features in the sequence.

Some researchers have studied the use of temporal structures for recognizing
human activities. Methods based on dynamical Bayesian networks and Markov
models have shown promise but either require manual design by experts [9]
or detailed training data that can be expensive to collect [10]. Other work has
aimed at constructing plausible temporal structures [11] in the actions of different
agents but does not consider the temporal composition within the movements
of a single subject, in part due to their holistic representation. On the other
hand, discriminative models of temporal context have also being applied for
classification of simple motions in rather simplified environments [12–15].

In addition to temporal structures, other contextual information can benefit
activity recognition, such as background scene context [4] and object interac-
tions [11, 16]. Our paper focuses on incorporating temporal context, but does
not exclude future work for combining more contextual information.
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Our approach to capturing temporal structures is related to part-based mod-
els for object recognition. Both generative [17–20] and discriminative [21, 22]
models have shown promise in leveraging the spatial structures among parts for
object recognition.

In this paper, we present a new representation for human activities in video.
The key observation is that many activities can be described as a temporal com-
position of simple motion segments. At the global temporal level, we model the
distinctive overall statistics of the activity. At shorter temporal ranges, we model
the patterns in motion segments of shorter duration that are arranged temporally
to compose the overall activity. Moreover, such temporal arrangement consid-
ered by our model is not rigid, instead it accounts for the uncertainty in the
exact temporal location of each motion segment.

2 Video Representation

Our model of human actions can be applied over a variety of video descriptors.
The key requirement is that a descriptor can be computed over multiple tempo-
ral scales, since our motion segment classifiers can operate on video segments of
varying length. Frame-based representations and representations based on his-
tograms are particular examples of descriptors that fit well to our framework.
Here, we adopt a representation based on spatio-temporal interest points. In-
terest point based descriptors are attractive specially when tracking the subject
performing the activity is difficult or not available. Several methods have been
proposed for detecting spatio-temporal interest points in sequences [3, 23, 24].
In our approach, we use the 3-D Harris corner detector [3]. Each interest point
is described by HoG (Histogram of Gradients) and HoF (Histogram of Flow)
descriptors [5]. Furthermore, we vector quantize the descriptors by computing
memberships with respect to a descriptor codebook, which is obtained by k-
means clustering of the descriptors in the training set. During model learning
and matching, we compute histograms of codebook memberships over particular
temporal ranges of a given video, which are denoted by ψi in the following.

Fig. 1. Our framework can be applied over a variety of video data representations. Here
we adopt a representation based on spatio-temporal interest points. This figure shows
example spatio-temporal interest points detected with the 3D Harris corner method
from [3]. Video patches are extracted around each point, and described by their local
shape and motion patterns.
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Fig. 2. Model Architecture. Here we show the structure of our model for activity recog-
nition. The input video V is described by histograms of vector quantized interest points,
which are computed over multiple temporal ranges. Each motion segment classifier Ai

has a particular temporal scale, and it is matched to the features ψi(V, hi) from tempo-
ral segments of the input sequence of that temporal extent. The optimal location of each
motion segment classifier is determined by the appearance similarity (Ai ·ψi(V, hi)) and
penalty of temporal displacement from the anchor point ti (τi ·ψ(hi − ti)). The overall
matching score combines scores of individual components. A classification decision is
made by thresholding the resulting matching score. See Sec. 3 for more details.

3 Modeling Temporal Structures

In this section we present our framework for recognizing complex human activi-
ties in video. We propose a temporal model for recognizing human actions that
incorporates simple motion segment classifiers of multiple temporal scales. Fig. 2
shows a schematic illustration of our human action model. The basic philosophy
is very simple: a video sequence is first decomposed into many temporal segments
of variable length (including the degenerate case of the full sequence itself). Each
video segment is matched against one of the motion segment classifiers by mea-
suring image-based similarities as well as the temporal location of the segment
with respect to the full sequence. The best matching scores from each motion
segment classifier are accumulated to obtain a measure of the matching quality
between the full action model and the query video. As Fig. 2 illustrates, an action
model encodes motion information at multiple temporal scales. It also encodes
the ordering in which the motion segments tend to appear in the sequence. In
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the following, we discuss the details of the model, the recognition process and
learning algorithm.

3.1 Model Description

Here we introduce the model of human actions, which is illustrated in Fig. 2. Our
full action model is composed by a set of K motion segment classifiers A1, ..., AK ,
each of them operating at a particular temporal scale. Each motion segment
classifier Ai operates over a histogram of quantized interest points extracted
from a temporal segment whose length is defined by the classifier’s temporal
scale si. In addition to the temporal scale, each motion segment classifier also
specifies a temporal location centered at its preferred anchor point ti. Lastly, the
motion segment classifier is enriched with a flexible displacement model τi that
captures the variability in the exact placement of the motion segment Ai within
the sequence.

We summarize the parameters of our model with the parameter vector w as
the concatenation of the motion segment classifiers and the temporal displace-
ment parameters,

w = (A1, ..., AK , τ1, ..., τK). (1)

3.2 Model Properties

Our model addresses the need to consider temporal structure in the task of
human activity classification. In the following, we discuss some important prop-
erties of our framework.

Coarse-to-fine motion segment classifiers Our model contains multiple classifiers
at different time scales, enabling it to capture characteristic motions of various
temporal granularity. On one end, holistic bag-of-features operate at the coarsest
scale, while frame-based methods operate at the finest scale. Our framework has
the flexibility to operate between these two ends of the temporal spectrum, and
it closes the gap by allowing multiple classifiers to reside in a continuum of
temporal scales.

Temporal Context While discriminative appearance is captured by our multiple
classifiers at different time scales, the location and order in which the motion seg-
ments occur in the overall activity also offer rich information about the activity
itself. Our framework is able to capture such temporal context: the anchor points
of the motion segment classifiers encode the temporal structure of the activity. In
particular, these canonical positions prohibit the classifiers from matching time
segments that are distant from them. This implicitly carries ordering constraints
that are useful for discriminating human activities.



6 J. C. Niebles, C.-W. Chen and L. Fei-Fei

Flexible Model Equipped with classifiers of multiple time scales and the temporal
structure embedded in their anchor points, our model is capable of searching for
a best match in a query sequence and score it accordingly. However, the temporal
structure in videos of the same class might not be perfectly aligned. To handle
intra-class variance, our model incorporates a temporal displacement penalty
that allows the optimal placement of the each motion segment to deviate from
its anchor point.

3.3 Recognition

Given a trained model, the task in recognition is to find the best matching of the
model to an input sequence. This requires finding the best scoring placement for
each of the K motion segment classifiers. We denote a particular placement of the
motion segment classifiers within a sequence V by a hypothesis H = (h1, ..., hk).
Each hi defines the temporal position for the i-th motion segment classifier. We
measure the matching quality of motion segment classifier Ai at location hi by
favoring good appearance similarity between the motion segment classifier and
the video features, and penalizing for the temporal misplacement of the motion
segment classifier when hi is far from the anchor point ti. That is, the matching
score for the i-th motion segment classifier is

Ai · ψi(V, hi)− τi · ψdi(hi − ti). (2)

In the first term of Eq. 2, which captures the appearance similarity, ψi(V, hi)
is the appearance feature vector (i.e. histogram of quantized interest points)
extracted at location hi with scale si. In our experiments, we implement the
classifier Ai with a χ2 support vector machine. The kernel function for Ai is
given by

K(xk, xj) = exp

(
− 1

2S

D∑
r=1

(xkr − xjr)2

xkr + xjr

)
, (3)

where S denotes the mean distance among training examples, {xki}i=1...D are
the elements of the histogram xk and D is the histogram dimensionality. In
practice, D is equal to the size of the codebook. In the second term of Eq. 2,
which captures the temporal misplacement penalty, ψdi(hi − ti) denotes the
displacement feature. The penalty, parametrized by τi = {αi, βi}, is a quadratic
function of the motion segment displacement and given by

τi · ψdi(hi − ti) = αi · (hi − ti)2 + βi · (hi − ti). (4)

We obtain an overall matching score for hypothesis H by accumulating the
scores from all motion segment classifiers in the model:

K∑
i=1

Ai · ψi(V, hi)− τi · ψdi(hi − ti). (5)
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Let fw(V ) be a scoring function that evaluates sequence V . In recognition,
we consider all possible hypotheses and choose the one with the best matching
score:

fw(V ) = max
H

K∑
i=1

Ai · ψi(V, hi)− τi · ψdi(hi − ti). (6)

A binary classification decision for input video V is done by thresholding the
matching score fw(V ).

There is a large number of hypotheses for a given input video sequence.
However, note that once the appearance similarities between the video sequence
and each motion segment classifier are computed, selecting the hypothesis with
the best matching score can be done efficiently using dynamic programming and
distance transform techniques [18] in a similar fashion to [21, 25].

3.4 Learning

Suppose we are given a set of example sequences {V 1, . . . , V N} and their cor-
responding class labels y1:N , with yi ∈ {1,−1}. Our goal is to use the training
examples to learn the model parameters w. This can be formulated as the mini-
mization of a discriminative cost function. In particular, we consider the following
minimization problem:

min
w

1
2
‖w‖2 + C

N∑
i=1

max(0, 1− yifw(V i)), (7)

where C controls the relative weight of the hinge loss term. This is the formula-
tion of a Latent Support Vector Machine (LSVM) [21]. In the LSVM framework,
the scoring function maximizes over the hidden variables. In our method, the hid-
den variables correspond to the best locations of the motion segment classifiers
on each training video. Note that it is not necessary to supervise the locations of
the motion segment classifiers during training, instead this is a weakly supervised
setting, where only a class label is provided for each example.

The optimization problem described above is, in general, non-convex. How-
ever, it has been shown in [21] that the objective function is convex for the
negative examples, and also convex for the positive examples when the hidden
variables are fixed.

This leads to an iterative learning algorithm that alternates between esti-
mating model parameters and estimating the hidden variables for the positive
training examples. In summary the procedure is as follows. In the first step,
the model parameters w are fixed. The best scoring locations H?

p of the motion
segment classifiers are selected for each positive example p. This is achieved by
running the matching process described in Section 3.3 on the positive videos. In
the second step, by fixing the hidden variables of the positive examples to the
locations given by H?

p , the optimization problem in Eq. 7 becomes convex. We
select negative examples by running the matching process in all negative training
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videos and retrieving all hypotheses with large matching score. We train the pa-
rameters w using LIBSVM [26] on the resulting positive and negative examples.
This process is repeated for a fixed small number of iterations.

In most cases, the iterative algorithm described above requires careful ini-
tialization. We choose a simple initialization heuristic. First, we train a classifier
with a single motion segment classifier that covers the entire sequence. This is
equivalent to training a χ2-SVM on a holistic bag of features representation. We
then augment the model with the remaining K − 1 motion segment classifiers.
The location and scale of each additional motion segment classifier is selected so
that it covers a temporal range that correlates well with the global motion seg-
ment classifier. This favors temporal segments that exhibit features important
for overall discrimination.

4 Experimental results

In order to test our framework, we consider three experimental scenarios. First,
we test the ability of our approach to discriminate simple actions on a bench-
mark dataset. Second, we test the effectiveness of our model at leveraging the
temporal structure in human actions on a set of synthesized complex actions.
Last, we present a new challenging Olympic Sports Dataset and show promising
classification results with our method.

4.1 Simple actions

We use the KTH Human actions dataset [27] to test the ability of our method
to classify simple motions. The dataset contains 6 actions performed by 25 ac-
tors, for a total of 2396 sequences. We follow the experimental settings described
in [27]. In all experiments, we adopt a representation based on spatio-temporal
interest points described by concatenated HoG/HoF descriptors. We construct a
codebook of local spatio-temporal patches from feature descriptors in the train-
ing set. We set the number of codewords to be 1000. Experimental results are
shown in Table 1. A direct comparison is possible to the methods that follow the
same experimental setup [5, 8, 27, 28]. We note that our method shows competi-
tive results, but its classification accuracy is slightly lower than the best result
reported in [28].

4.2 Synthesized Complex Actions

In this experiment, we aim to test the ability of our model to leverage the
temporal structure of human actions. In order to test this property in a controlled
setting, we construct a synthesized set of complex actions by concatenating 3
simple motions from the Weizmann action database: ‘jump’, ‘wave’ and ’jack’.
In total, we synthesize 6 complex actions classes by concatenating one video of
each simple motion into a long sequence.
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Fig. 3. An example of our learned model. In this illustration, the horizontal axis repre-
sents time. Each row corresponds to a motion segment classifier learned by our model
whose temporal extent is indicated by its vertical location. The appearance of the mo-
tion segment is illustrated by a few example frames. The associated dot indicates the
anchor position ti of the motion segment relative to the full sequence. The parameters
of the temporal misplacement penalty τi are represented by the parabola centered at
the anchor point. Notice that the vertical arrangement of the motion segments shows
the distinct temporal scales at which each classifier operates.

In this test, a baseline model that uses a single motion segment classifier
covering the entire video sequence performs at random chance or ≈ 17%. The
simple holistic bag-of-features has trouble differentiating actions in this set since
the overall statistics are nearly identical. On the other hand, our model which
takes advantage of temporal structure and orderings, can easily discriminate the
6 classes and achieve perfect classification performance at 100%. In Fig. 4 we
show a learned model for the complex action composed by ‘wave’-‘jump’-‘jack’.
Notice that our model nicely captures discriminative motion segments such as
the transitions between ‘jump’ and ‘jack’.

4.3 Complex activities: Olympic Sports Dataset

We have collected a dataset of Olympic Sports activities from YouTube se-
quences. Our dataset contains 16 sport classes, with 50 sequences per class.
See Fig. 5 for example frames from the dataset. The sport activities depicted in
the dataset contain complex motions that go beyond simple punctual or repeti-
tive actions 4. For instance, sequences from the long-jump action class, show an
athlete first standing still, in preparation for his/her jump, followed by running,
jumping, landing and finally standing up. The dataset is available for download
at our website http://vision.stanford.edu.
4 In contrast to other sport datasets such as [15], which contains periodic or simple

actions such as walking, running, golf-swing, ball-kicking.
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Table 1. Left: Accuracy for action classification in the KTH dataset. Right: Compar-
ison of our model to current state of the art methods.

Action Class Our Model

walking 94.4%
running 79.5%
jogging 78.2%

hand-waving 99.9%
hand-clapping 96.5%

boxing 99.2%

Algorithm Perf.

Ours 91.3%

Wang et al. [28] 92.1%
Laptev et al. [5] 91.8%
Wong et al. [8] 86.7%

Schuldt et al. [27] 71.5%

Kim et al. [29] 95%
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Fig. 4. A learned model for the synthesized complex action ‘wave’-‘jump’-‘jack’. See
Fig. 3 for a description of the illustration.

We split the videos from each class in the dataset into 40 sequences for train-
ing and 10 for testing. We illustrate two of the learned models in Fig. 6. Table 2
shows the classification results of our algorithm. We compare the performance of
our model to the multi-channel method of [5], which incorporates rigid spatio-
temporal binnings and captures a rough temporal ordering of features.

Finally, Fig. 7 shows three learned models of actions in the Olympic Sports
dataset, along with matchings to some testing sequences. In the long jump exam-
ple, the first motion segment classifier covers the running motion at the beginning
of the sequence. This motion segment has a low displacement penalty over a large
temporal range as indicated by its wide parabola. It suggests that the model has
learned to tolerate large displacements in the running stage of this activity. On
the other hand, in the vault example, the middle motion segment classifier has
a low matching score to the top testing sequence. However, the matching scores
in other temporal segments are high, which provides enough evidence to the full
action model for classifying this sequence correctly. Similarly, the bottom clean
and jerk sequence in the snatch model obtains a high matching score for the last
motion segment, but the evidence from the motion segments is rather low. We
also observe that our learned motion segment classifiers display a wide range of
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Fig. 5. Olympic Sports Dataset. Our dataset contains 50 videos from each of 16 classes:
high jump, long jump, triple jump, pole vault, discus throw, hammer throw, javelin
throw, shot put, basketball layup, bowling, tennis serve, platform (diving), springboard
(diving), snatch (weightlifting), clean and jerk (weightlifting) and vault (gymnastics).
The sequences, obtained from YouTube, contain severe occlusions, camera movements,
compression artifacts, etc. The dataset is available at http://vision.stanford.edu.

temporal scales, indicating that our model is able to capture characteristic mo-
tion patterns at multiple scales. For example, the longer segments that contain
the athlete holding the weights in the snatch model, and the shorter segments
that enclose a jumping person in the long jump model.

5 Conclusion and Future Work

In this paper we have empirically shown that incorporating temporal structures
is beneficial for recognizing both complex human activities as well as simple
actions. Future directions include incorporating other types of contextual infor-
mation and richer video representations.
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Fig. 6. Learned model for the complex actions in the Olympic Sports Dataset: high-
jump and clean-and-jerk. See Fig. 3 for a description of the illustration.
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