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Abstract

We propose a first attempt to classify events in static im-
ages by integrating scene and object categorizations. We
define an event in a static image as a human activity taking
place in a specific environment. In this paper, we use a num-
ber of sport games such as snow boarding, rock climbing or
badminton to demonstrate event classification. Our goal is
to classify the event in the image as well as to provide a
number of semantic labels to the objects and scene environ-
ment within the image. For example, given a rowing scene,
our algorithm recognizes the event as rowing by classifying
the environment as a lake and recognizing the critical ob-
jects in the image as athletes, rowing boat, water, etc. We
achieve this integrative and holistic recognition through a
generative graphical model. We have assembled a highly
challenging database of 8 widely varied sport events. We
show that our system is capable of classifying these event
classes at 73.4% accuracy. While each component of the
model contributes to the final recognition, using scene or
objects alone cannot achieve this performance.

1. Introduction and Motivation
When presented with a real-world image, such as the

top image of Fig.1, what do you see? For most of us, this

picture contains a rich amount of semantically meaningful

information. One can easily describe the image with the

objects it contains (such as people, women athletes, river,

trees, rowing boat, etc.), the scene environment it depicts

(such as outdoor, lake, etc.), as well as the activity it im-

plies (such as a rowing game). Recently, a psychophysics

study has shown that in a single glance of an image, humans

can not only recognize or categorize many of the individual

objects in the scene, tell apart the different environments

of the scene, but also perceive complex activities and so-

cial interactions [5]. In computer vision, a lot of progress

has been made in object recognition and classification in re-

cent years (see [4] for a review). A number of algorithms

have also provided effective models for scene environment
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Water

Tree

event: Rowing

scene: Lake

Figure 1. Telling the what, where and who story. Given an event (rowing)

image such as the one on the top, our system can automatically interpret

what is the event, where does this happen and who (or what kind of objects)

are in the image. The result is represented in the bottom figure. A red name

tag over the image represents the event category. The scene category label

is given in the white tag below the image. A set of name tags are attached

to the estimated centers of the objects to indicate their categorical labels.

As an example, from the bottom image, we can tell from the name tags

that this is a rowing sport event held on a lake (scene). In this event, there

are rowing boat, athletes, water and trees (objects).

categorization [19, 16, 22, 6]. But little has been done in

event recognition in static images. In this work, we define

an event to be a semantically meaningful human activity,

taking place within a selected environment and containing

a number of necessary objects. We present a first attempt
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to mimic the human ability of recognizing an event and its

encompassing objects and scenes. Fig.1 best illustrates the

goal of this work. We would like to achieve event catego-

rization by as much semantic level image interpretation as

possible. This is somewhat like what a school child does

when learning to write a descriptive sentence of the event.

It is taught that one should pay attention to the 5 W’s: who,

where, what, when and how. In our system, we try to answer

3 of the 5 W’s: what (the event label), where (the scene en-

vironment label) and who (a list of the object categories).

Similar to object and scene recognition, event classifi-

cation is both an intriguing scientific question as well as a

highly useful engineering application. From the scientific

point of view, much needs to be done to understand how

such complex and high level visual information can be rep-

resented in efficient yet accurate way. In this work, we pro-

pose to decompose an event into its scene environment and

the objects within the scene. We assume that the scene and

the objects are independent of each other given an event.

But both of their presences influence the probability of rec-

ognizing the event. We made a further simplification for

classifying the objects in an event. Our algorithm ignores

the positional and interactive relationships among the ob-

jects in an image. In other words, when athletes and moun-

tains are observed, the event of rock climbing is inferred, in

spite of whether the athlete is actually on the rock perform-

ing the climbing. Much needs to be done in both human

visual experiments as well as computational models to ver-

ify the validity and effectiveness of such assumptions. From

an engineering point of view, event classification is a useful

task for a number of applications. It is part of the ongo-

ing effort of providing effective tools to retrieve and search

semantically meaningful visual data. Such algorithms are

at the core of the large scale search engines and digital li-

brary organizational tools. Event classification is also par-

ticularly useful for automatic annotation of images, as well

as descriptive interpretation of the visual world for visually-

impaired patients.

We organize the rest of our paper in the following way.

In Sec.2, we briefly introduce our models and provide a lit-

erature review on the relevant works. We describe in details

the integrative model in Sec.3 and illustrate how learning is

done in Sec.4. Sec.5 discusses our system and implemen-

tation details. Our dataset, the experiments and results are

presented in Sec.6. Finally we conclude the paper by Sec.7.

2. Overall Approach and Literature Review
Our model integrates scene and object level image in-

terpretation in order to achieve the final event classifica-

tion. Let’s use the sport game polo as an example. In the

foreground, a picture of the polo game usually consists of

distinctive objects such as horses and players (in polo uni-

forms). The setting of the polo field is normally a grassland.

Following this intuition, we model an event as a combina-

tion of scene and a group of representative objects. The goal

of our approach is not only to classify the images into differ-

ent event categories, but also to give meaningful, semantic

labels to the scene and object components of the images.

While our approach is an integrative one, our algorithm

is built upon several established ideas in scene and object

recognition. To the first order of approximation, an event

category can be viewed as a scene category. Intuitively, a

snowy mountain slope can predict well an event of skiing

or snow-boarding. A number of previous works have of-

fered ways of recognizing scene categories [16, 22, 6]. Most

of these algorithms learn global statistics of the scene cate-

gories through either frequency distributions or local patch

distributions. In the scene part of our model, we adopt a

similar algorithm as Fei-Fei et al. [6]. In addition to the

scene environment, event recognition relies heavily on fore-

ground objects such as players and ball for a soccer game.

Object categorization is one of the most widely researched

areas recently. One could grossly divide the literature into

those that use generative models (e.g. [23, 7, 11]) and those

that use discriminative models or methods (e.g. [21, 27]).

Given our goal is to perform event categorization by inte-

grating scene and object recognition components, it is nat-

ural for us to use a generative approach. Our object model

is adapted from the bag of words models that have recently

shown much robustness in object categorization [2, 17, 12].

As [25] points out, other than scene and object level infor-

mation, general layout of the image also contributes to our

complex yet robust perception of a real-world image. Much

can be included here for general layout information, from

a rough sketch of the different regions of the image to a

detailed 3D location and shape of each pixels of the im-

age. We choose to demonstrate the usefulness of the lay-

out/geometry information by using a simple estimation of 3

geometry cues: sky at infinity distance, vertical structure of

the scene, and ground plane of the scene [8]. It is impor-

tant to point out here that while each of these three differ-

ent types of information is highly useful for event recogni-

tion (scene level, object level, layout level), our experiments

show that we only achieve the most satisfying results by in-

tegrating all of them (Sec.6).

Several previous works have taken on a more holistic ap-

proach in scene interpretation [14, 9, 18, 20]. In all these

works, global scene level information is incorporated in the

model for improving better object recognition or detection.

Mathematically, our paper is closest in spirit with Sudderth

et al [18]. We both learn a generative model to label the

images. And at the object level, both of our models are

based on the bag of words approach. Our model, however,

differs fundamentally from the previous works by provid-

ing a set of integrative and hierarchical labels of an image,

performing the what(event), where(scene) and who(object)



recognition of an entire scene.

3. The Integrative Model
Given an image of an event, our algorithm aims to not

only classify the type of event, but also to provide meaning-

ful, semantic labels to the scene and object components of

the images.

To incorporate all these different levels of information,

we choose a generative model to represent our image. Fig.2

illustrates the graphical model representation. We first de-

fine the variables of the model, and then show how an im-

age of a particular event category can be generated based

on this model. For each image of an event, our fundamen-

tal building blocks are densely sampled local image patches

(sampling grid size is 10 × 10). In recent years, interest

point detectors have demonstrated much success in object

level recognition (e.g. [13, 3, 15]). But for a holistic scene

interpretation task, we would like to assign semantic level

labels to as many pixels as possible on the image. It has

been observed that tasks such as scene classification bene-

fit more from a dense uniform sampling of the image than

using interest point detectors [22, 6]. Each of these local

image patches then goes on to serve both the scene recogni-

tion part of the model, as well as the object recognition part.

For scene recognition, we denote each patch by X in Fig.2.

X only encodes here appearance based information of the

patch (e.g. a SIFT descriptor [13]). For the object recog-

nition part, two types of information are obtained for each

patch. We denote the appearance information by A, and

the layout/geometry related information by G. A is similar

to X in expression. G in theory, however, could be a very

rich set of descriptions of the geometric or layout properties

of the patch, such as 3D location in space, shape, and so

on. For scenes subtending a reasonably large space (such as

these event scenes), such geometric constraint should help

recognition. In Sec.5, we discuss the usage of three simple

geometry/layout cues: verticalness, sky at infinity and the

ground-plane.1

We now go over the graphical model (Fig.2) and show

how we generate an event picture. Note that each node in

Fig.2 represents a random variable of the graphical model.

An open node is a latent (or unobserved) variable whereas

a darkened node is observed during training. The lighter

gray nodes (event, scene and object labels) are only ob-

served during training whereas the darker gray nodes (im-

1The theoretically minded machine learning readers might notice that

the observed variables X, A and G occupy the same physical space on the

image. This might cause the problem of “double counting”. We recognize

this potential confound. But in practice, since our estimations are all taken

placed on the same “double counted” space in both learning and testing,

we do not observe a problem. One could also argue that even though these

features occupy the same physical locations, they come from different “im-

age feature space”. Therefore this problem does not apply. It is, however,

a curious theoretical point to explore further.
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Figure 2. Graphical model of our approach. E, S, and O represent the

event, scene and object labels respectively. X is the observed appearance

patch for scene. A and G are the observed appearance and geometry/layout

properties for the object patch. The rest of the nodes are parameters of the

model. For details, please refer to Sec.3

age patches) are observed in both training and testing.

1. An event category is represented by the discrete ran-

dom variable E. We assume a fixed uniform prior dis-

tribution of E, hence omitting showing the prior distri-

bution in Fig.2. We select E ∼ p(E). The images are

indexed from 1 to I and one E is generated for each of

them.

2. Given the event class, we generate the scene image of

this event. There are in theory S classes of scenes for

the whole event dataset. For each event image, we as-

sume only one scene class can be drawn.

• A scene category is first chosen according to S ∼
p(S|E, ψ). S is a discrete variable denoting the class

label of the scene. ψ is the multinomial parameter that

governs the distribution of S given E. ψ is a matrix

of size E × S, whereas η is an S dimensional vector

acting as a Dirichlet prior for ψ.

• Given S, we generate the mixing parameters ω that

governs the distribution of scene patch topics ω ∼
p(ω|S, ρ). Elements of ω sum to 1 as it is the multino-

mial parameter of the latent topics t. ρ is the Dirichlet

prior of ω, a matrix of size S ×T , where T is the total

number of the latent topics.

• A patch in the scene image is denoted by X . To gen-

erate each of the M patches



– Choose the latent topic t ∼ Mult(ω). t is a dis-

crete variable indicating which latent topic this

patch will come from.

– Choose patch X ∼ p(X|t, θ), where θ is a ma-

trix of size T × VS . VS is the total number of

vocabularies in the scene codebook for X . θ is

the multinomial parameter for discrete variable

X , whereas β is the Dirichlet prior for θ.

3. Similar to the scene image, we also generate an object
image. Unlike the scene, there could be more than one

objects in an image. We use K to denote the number of

objects in a given image. There is a total of O classes

of objects for the whole dataset. The following gener-

ative process is repeated for each of the K objects in

an image.

• An object category is first chosen according to O ∼
p(O|E, π). O is a discrete variable denoting the class

label of the object. A multinomial parameter π gov-

erns the distribution of O given E. π is a matrix of

size E × O, whereas ς is a O dimensional vector act-

ing as a Dirichlet prior for π.

• Given O, we are ready to generate each of the N

patches A, G in the kth object of the object image

– Choose the latent topic z ∼ Mult(λ|O). z is a

discrete variable indicating which latent topic this

patch will come from, whereas λ is the multino-

mial parameter for z, a matrix of size O × Z. K
is the total number of objects appear in one im-

age, and Z is the total number of latent topics. ξ
is the Dirichlet prior for λ.

– Choose patch A, G ∼ p(A, G|t, ϕ), where ϕ is a

matrix of size Z × VO . VO is the total number of

vocabularies in the codebook for A, G. ϕ is the

multinomial parameter for discrete variable A, G,

whereas α is the Dirichelet prior for ϕ. Note that

we explicitly denote the patch variable as A, G to

emphasize on the fact it includes both appearance

and geometry/layout property information.

Putting everything together in the graphical model, we

arrive at the following joint distribution for the image

patches, the event, scene, object labels and the latent top-

ics associated with these labels.

p(E, S,O,X,A,G, t, z, ω|ρ, ϕ, λ, ψ, π, θ) =

p(E) · p(S|E, ψ)p(ω|S, ρ)
M∏

m=1

p(Xm|tm, θ)p(tm|w)

·
K∏

k=1

p(Ok|E, π)
N∏

n=1

p(An, Gn|zn, ϕ)p(zn|λ,Ok) (1)

where O,X,A,G, t, z represent the generated objects, ap-

pearance representation of patches in the scene part, appear-

ance and geometry properties of patches in the object part,

topics in the scene part, and topics in the object part respec-

tively. Each component of Eq.1 can be broken into

p(S|E, ψ) = Mult(S|E, ψ) (2)

p(ω|S, ρ) = Dir(ω|ρj·), S = j (3)

p(tm|ω) = Mult(tm|ω) (4)

p(Xm|t, θ) = p(Xm|θj·), tm = j (5)

p(O|E, π) = Mult(O|E, π) (6)

p(zn|λ,O) = Mult(zn|λ,O) (7)

p(An, Gn|z, ϕ) = p(An, Gn|ϕj·), zn = j (8)

where “·” in the equations represents components in the row

of the corresponding matrix.

3.1. Labeling an Unknown Image

Given an unknown event image with unknown scene and

object labels, our goal is: 1) to classify it as one of the event

classes (what); 2) to recognize the scene environment class

(where); and 3) to recognize the object classes in the image

(who). We realize this by calculating the maximum likeli-

hood at the event level, the scene level and the object level

of the graphical model (Fig.2).

At the object level, the likelihood of the image given the

object class is

p(I|O) =
N∏

n=1

∑
j

P (An, Gn|zj , O)P (zj |O) (9)

The most possible objects appear in the image are based

on the maximum likelihood of the image given the object

classes, which is O = argmaxOp(I|O). Each object is la-

beled by showing the most possible patches given the ob-

ject, represented as O = argmaxOp(A,G|O).
At the scene level, the likelihood of the image given the

scene class is:

p(I|S, ρ, θ) =
∫

p(ω|ρ, S)(
M∏

m=1

∑
tm

p(tm|ω)·p(Xm|tm, θ))dω

(10)

Similarly, the decision of the scene class label can be made

based on the maximum likelihood estimation of the image

given the scene classes, which is S = argmaxSp(I|S, ρ, θ).
However, due to the coupling of θ and ω, the maximum

likelihood estimation is not tractable computationally [1].

Here, we use the variational method based on Variational

Message Passing [24] provided in [6] for an approximation.

Finally, the image likelihood for a given event class is

estimated based on the object and scene level likelihoods:

p(I|E) ∝
∑

j

P (I|Oj)P (Oj |E)P (I|S)P (S|E) (11)

The most likely event label is then given according to E =
argmaxEp(I|E).



Figure 3. Our dataset contains 8 sports event classes: rowing (250 im-

ages), badminton (200 images), polo (182 images), bocce (137 images),

snowboarding (190 images), croquet (236 images), sailing (190 images),

and rock climbing (194 images). Our examples here demonstrate the com-

plexity and diversity of this highly challenging dataset.

4. Learning the Model
The goal of learning is to update the parameters

{ψ, ρ, π, λ, θ, β} in the hierarchical model (Fig.2). Given

the event E, the scene and object images are assumed in-

dependent of each other. We can therefore learn the scene-

related and object-related parameters separately.

We use Variational Message Passing method to update

parameters {ψ, ρ, θ}. Detailed explanation and update

equations can be found in [6]. For the object branch of the

model, we learn the parameters {π, λ, β} via Gibbs sam-

pling [10] of the latent topics. In such a way, the topic sam-

pling and model learning are conducted iteratively. In each

round of the Gibbs sampling procedure, the object topic

will be sampled based on p(zi|z\i, A,G,O), where z\i de-

notes all topic assignment except the current one. Given the

Dirichlet hyperparameters ξ and α, the distribution of topic

given object p(z|O) and the distribution of appearance and

geometry words given topic p(A,G|z) can be derived by

using the standard Dirichlet integral formulas:

p(z = i|z\i, O = j) =
cij + ξ

Σicij + ξ × H
(12)

p((A,G) = k|z\i, z = i) =
nki + ϕ

Σknki + ϕ × VO
(13)

where cij is the total number of patches assigned to object

j and object topic i, while nki is the number of patch k as-

signed to object topic i. H is the number of object topics,

which is set to some known, constant value. VO is the object

codebook size. And a patch is a combination of appearance

(A) and geometry (G) features. By combining Eq.12 and

13, we can derive the posterior of topic assignment as

p(zi|z\i, A, G, O) = p(z = i|z\i, O) ×
p((A,G) = k|z\i, z = i) (14)

Current topic will be sampled from this distribution.

5. System Implementation
Our goal is to extract as much information as possible

out of the event images, most of which are cluttered, filled

with objects of variable sizes and multiple categories. At

the feature level, we use a grid sampling technique similar

to [6]. In our experiments, the grid size is 10 × 10. A patch

of size 12× 12 is extracted from each of the grid centers. A

128-dim SIFT vector is used to represent each patch [13].

The poses of the objects from the same object class change

significantly in these events. Thus, we use rotation invari-

ant SIFT vector to better capture the visual similarity within

each object class. A codebook is necessary in order to rep-

resent an image as a sequence of appearance words. We

build a codebook of 300 visual words by applying K-means

for the 200000 SIFT vectors extracted from 30 randomly

chosen training images per event class. To represent the ge-

ometry/layout information, each pixel in an image is given

a geometry label using the codes provided by [9]. In this pa-

per, only three simple geometry/layout properties are used.

They are: ground plane, vertical structure and sky at infin-

ity. Each patch is assign a geometry membership by the

major vote of the pixels within.

6. Experiments and Results
6.1. Dataset

As the first attempt to tackle the problem of static event

recognition, we have no existing dataset to use and compare



with. Instead we have compiled a new dataset containing 8

sports event categories collected from the Internet: bocce,

croquet, polo, rowing, snowboarding, badminton, sailing,

and rock climbing. The number of images in each category

varies from 137 (bocce) to 250 (rowing). As shown in Fig.

3, this event dataset is a very challenging one. Here we

highlight some of the difficulties.

• The background of each image is highly cluttered and di-

verse;

• Object classes are diverse;

• Within the same category, sizes of instances from the same

object are very different;

• The pose of the objects can be very different in each image;

• Number of instances of the same object category change di-

versely even within the same event category;

• Some of the foreground objects are too small to be detected.

We have also obtained a thorough groundtruth annotation

for every image in the dataset (in collaboration with Lo-

tus Hill Research Institute [26]). This annotation provides

information for: event class, background scene class(es),

most discernable object classes, and detailed segmentation

of each objects.

6.2. Experimental Setup
We set out to learn to classify these 8 events as well as

labeling the semantic contents (scene and objects) of these

images. For each event class, 70 randomly selected images

are used for training and 60 are used for testing. We do

not have any previous work to compare to. But we test our

algorithm and the effectiveness of each components of the

model. Specifically, we compare the performance of our

full integrative model with the following baselines.

• A scene only model. We use the LDA model of [6] to

do event classification based on scene categorization

only. We “turn off” the influence of the object part by

setting the likelihood of O in Eq.11 to a uniform dis-

tribution. This is effectively a standard “bag of words”

model for event classification.

• An object only model. In this model we learn and rec-

ognize an event class based on the distribution of fore-

ground objects estimated in Eq.9. No geometry/layout

information is included. We “turn off” the influence of

the scene part by setting the likelihood of S in Eq.11 to

a uniform distribution.

• A object + geometry model. Similar to the object-only

model, here we include the feature representations of

both appearance (A) and geometry/layout (G).

Except for the LDA model, training is supervised by hav-

ing the object identities labeled. We use exactly the same

training and testing images in all of these different model

conditions.

6.3. Results
We report an overall 8-class event discrimination of

73.4% by using the full integrative model. Fig.4 shows the

confusion table results of this experiment. In the confusion

table, the rows represent the models for each event category

while the columns represent the ground truth categories of

events. It is interesting to observe that the system tends to

confuse bocce and croquet, where the images tend to share

similar foreground objects. On the other hand, polo is also

more easily confused with bocce and croquet because all

of these events often take places in grassland type of envi-

ronments. These two facts agree with our intuition that an

event image could be represented as a combination of the

foreground objects and the scene environment.

In the control experiment with different model condi-

tions, our integrative model consistently outperforms the

other three models (see Fig.5). A curious observation is

that the object + geometry model performs worse than the

object only model. We believe that this is largely due to the

simplicity of the geometry/layout properties. While these

properties help to differentiate sky, ground from vertical

structures, they also introduce noise. As an example, water

and snow are always incorrectly classified as sky or ground

by the geometry labeling process, which deteriorates the re-

sult of object classification. However, the scene recognition

alleviates the confusion among water, snow, sky and ground

by encoding explicitly their different appearance properties.

Thus, when the scene pathway is added to the integrated

model, the overall results become much better.

Finally, we present more details of our image interpreta-

tion results in Fig.6. At the beginning of this paper, we set

out to build an algorithm that can tell a what, where and who
story of the sport event pictures. We show here how each of

these W’s is answered by our algorithm. Note all the labels

provided in this figure are automatically generated by the

algorithm, no human annotations are involved.

7. Conclusion
In this work, we propose an integrative model that learns

to classify static images into complicated social events such

as sport games. This is achieved by interpreting the se-

mantic components of the image as detailed as possible.

Namely, the event classification is a result of scene envi-

ronment classification and object categorization. Our goal

is to offer a rich description of the images. It is not hard

to imagine such algorithm would have many applications,

especially in semantic understanding of images. Commer-

cial search engines, large digital image libraries, personal

albums and other domains can all benefit from more human-

like labelings of images. Our model is, of course, just the

first attempt for such an ambitious goal. Much needs to be

improved. We would like to improve the inference schemes

of the model, further relax the amount of supervision in

training and validate it by more extensive experiments.
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Figure 6. (This figure is best viewed in color and with PDF magnification.) Image interpretation via event, scene, and object recognition. Each row shows

results of an event class. Column 1 shows the event class label. Column 2 shows the object classes recognized by the system. Masks with different colors

indicate different object classes. The name of each object class appears at the estimated centroid of the object. Column 3 is the scene class label assigned to

this image by our system. Finally Column 4 shows the sorted object distribution given the event. Names on the x-axis represents the object class, the order

of which varies across the categories. y-axis represents the distribution.


