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What do we see when we glance at a natural scene and how does it change as the glance becomes longer? We asked
naive subjects to report in a free-form format what they saw when looking at briefly presented real-life photographs. Our
subjects received no specific information as to the content of each stimulus. Thus, our paradigm differs from previous
studies where subjects were cued before a picture was presented and/or were probed with multiple-choice questions. In the
first stage, 90 novel grayscale photographs were foveally shown to a group of 22 native-English-speaking subjects. The
presentation time was chosen at random from a set of seven possible times (from 27 to 500 ms). A perceptual mask
followed each photograph immediately. After each presentation, subjects reported what they had just seen as completely
and truthfully as possible. In the second stage, another group of naive individuals was instructed to score each of the
descriptions produced by the subjects in the first stage. Individual scores were assigned to more than a hundred different
attributes. We show that within a single glance, much object- and scene-level information is perceived by human subjects. The
richness of our perception, though, seems asymmetrical. Subjects tend to have a propensity toward perceiving natural scenes
as being outdoor rather than indoor. The reporting of sensory- or feature-level information of a scene (such as shading and
shape) consistently precedes the reporting of the semantic-level information. But once subjects recognize more semantic-level
components of a scene, there is little evidence suggesting any bias toward either scene-level or object-level recognition.

Keywords: perception, natural scene, real-world scene, indoor, outdoor, sensory-level perception, segmentation,
object recognition, subordinate, entry level, superordinate, object categorization, scene categorization, event recognition,
free recall

Citation: Fei-Fei, L., Iyer, A., Koch, C., & Perona, P. (2007). What do we perceive in a glance of a real-world scene? Journal
of Vision, 7(1):10, 1–29, http://journalofvision.org/7/1/10/, doi:10.1167/7.1.10.

Introduction

It is known that humans can understand a real-world scene
quickly and accurately, saccading many times per second
while scanning a complex scene. Each of these glances
carries considerable information. Filmmakers have long
exploited this ability through a technique called Bflash cut.[
In a commercial motion picture called The Pawnbroker
(Lumet, 1965), S. Lumet inserted an unusually brief scene
that represented a distant memory. Lumet found that a
presentation lasting a third of a second, although unexpected
and unrelated to the flow of the main narrative, was sufficient
for the audience to capture the meaning of the interposed
scene (Biederman, Teitelbaum, & Mezzanotte, 1983).

Pioneering studies extended these anecdotal findings.
Potter (1976) and Potter, Staub, Rado, and O’Connor
(2002) utilized rapid serial visual presentations of images
and revealed that subjects could perceive scene content in
less than 200 ms. Furthermore, Potter demonstrated that

although the semantic understanding of a scene is quickly
extracted, it requires a few hundred milliseconds to be
consolidated into memory (Potter, 1976). Later studies
documented limits to our perception of a scene. Rensink,
O’Regan, and Clark (1997) showed that changes to
retinotopically large portions of the scene will sometimes
go unobserved. It is likely that this occurs if the regions
are not linked to the scene’s overall Bmeaning.[

Other hallmark investigations attempted to elucidate the
information involved in this Boverall meaning[; their
conclusions regarding scene perception paralleled con-
cepts in auditory studies of sentence and word compre-
hension. Biederman et al. found that recognition of objects
is impaired when those objects are embedded in a randomly
jumbled rather than a coherent scene (Biederman, 1972).
They identified several physical (support, interposition)
and semantic (probability, position, size) constraints that
objects must satisfy within a scene, similar to the syntactic
and grammatical rules of language (Biederman, 1982).
They investigated how object recognition was modulated
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by violating these constraints. They concluded that the
schema of a sceneVor the overall internal representation
of a scene that includes objects and object relationsVis
perceived within a single fixation (Biederman, 1982),
regardless of expectation and familiarity (Biederman et al.,
1983). Boyce, Pollatsek, and Rayner (1989) also demon-
strated that objects are more difficult to identify when
located against an inconsistent background given a
briefly flashed scene (150 ms), further suggesting that
both recognition of objects and global contextual under-
standing are quickly and deftly accomplished.

These studies show that some comprehension of a scene
is rapidly attained. However, in all previous studies of
scene perception, the experimenters have a set of
predetermined hypotheses to test. Their experiments are
hence constructed to illuminate certain parameters rele-
vant to their claims and questions. As a number of
questions are left unexplored by this approach, we propose
to examine unbiased real-world scene perception as a
function of display time. We have designed an experiment
in which subjects view one of nearly a hundred novel
natural scenes for a brief interval without any priming and
pre- or poststimulus cuing, as to its content. We ask them
to type freely what they have seen in as much detail as
possible. We vary the presentation time (PT) of the image
between 27 ms and 500 ms. Through unbiased responses,
we hope to uncover new aspects of scene perception that
were previously not considered. The following issues arose
when we examined the free-recall responses we collected.

1. There has been no commonly accepted definition of
the content of Bgist.[ Mandler and Parker (1976) have
suggested that three types of information are remem-
bered from a picture: (i) an inventory of objects, (ii)
descriptive information of the physical appearance
and other details of the objects, and (iii) spatial rela-
tions between the objects. In addition to this object
information, propositional relationships between ob-
jects, spatial layout of the scene, and a general im-
pression of the low-level features that fill the scene
(e.g., texture) are speculatively incorporated into the
scene gist (Wolfe, 1998a). Finally, Biederman (1982)
has proposed that global semantic meaning or con-
text also contributes to the initial surmisal of a scene.
Positing the Bcontents[ of a glance as an operational
definition of scene gist, we would like to ascertain
the visual and semantic information comprising scene
gist, as revealed by our subjects’ responses.

2. Rosch (1978) suggested that one distinguishes
between Bbasic-level,[ Bsuperordinate-level,[ and
Bsubordinate-level[ object categories. Similarly,
Tversky and Hemenway (1983) proposed the same
taxonomy for scene categories. These authors motivate
their theory with arguments of maximizing the visual
and linguistic information conveyed during naming.
Does human perception of natural complex scenes
reveal a similar hierarchy of objects and scenes?

3. One parameter to vary in examining scene perception
is the length of PTs. We are curious to see whether
different percepts arise in a given temporal order.

In the Method section, we introduce in detail our
experimental paradigm. We first show the images used
in our experiments (Stimuli section). The Experimental
Stage I section describes how we collected image
descriptions. The Experimental Stage II section then
explicates how these descriptions are evaluated. Five
different observations are presented in the Results and
Observations section. We summarize our findings and
general discussions in the Conclusion section.

Method

Our subjects were asked to freely recall what they
perceive in briefly displayed images of real-world scenes.
We explored the evolution of our subjects’ reports as a
function of the length of PTs. Our data were collected in
Stage I and analyzed in Stage II.

In Stage I, subjects viewed briefly a picture of a scene
on a computer monitor and were then asked to type what
they had seen, using a free-recall method to collect
responses. The Experimental Stage I section explains the
details of this stage of the experiment.

In Stage II, we asked an independent group of subjects
to evaluate and classify the free-recall responses collected
in Stage I. The Experimental Stage II section is a detailed
account of this evaluation process.

Stimuli

In most previous studies of scene perception or
object recognition, line drawings were used as stimuli
(Biederman, 1982; Hollingworth & Henderson, 1999).
Recently, several studies have used a large commercial
database of photographs to study the perception of scenes
and categories (Li, VanRullen, Koch, & Perona, 2002;
Thorpe, Fize, & Marlot, 1996; Torralba & Oliva, 2003).
This data set, unfortunately, is a collection of profes-
sionally photographed scenes, mostly shot with the goal
of capturing a single type of objects or specific themes of
scenes. We are, however, interested in studying images of
everyday scenes, as commonly seen by most people in a
naturalistic setting.1 Therefore, we assembled a collection
of images trying to minimize this sampling bias.

Figures 1 and 2 show our data set of 44 indoor images
and 46 outdoor images collected from the Internet in the
following way. We asked a group of 10 naive subjects to
randomly call out five names of scenes that first came to
their mind. Some of the names overlapped. After pruning,
we retained about 25 to 30 different words or word
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Figure 1. Forty-six images of outdoor scenes in our data set of 90 grayscale images.
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Figure 2. Forty-four images of indoor scenes in our data set of 90 grayscale images.
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phrases that corresponded to different environments.2 We
typed each of these words or word phrases in the Google
image search engine. From the first few page(s) of search
results, we randomly selected 3–6 images that depicted
the keyword. The Google image search engine largely
returned images found on people’s personal websites,
most often taken with a snapshot camera. Although
everyone has a bias when taking a picture, we believe
that the large number of images from different unknown
sources would help average out these biases.

A number of authors have suggested that color
information is not critical for the rapid categorization of
scenes (Fabre-Thorpe, Delorme, Marlot, & Thorpe, 2001;
Fei-Fei et al., 2005). While color could be diagnostic in a
later stage of recognition (Oliva & Schyns, 2000), and
uncommon colors might even hinder rapid scene catego-
rization (Goffaux, Jacques, Mauraux, Oliva, Schynsand, &
Rossion, 2005), we are mostly concerned with the initial
evolution of scene perception. Thus, we decided to use only
grayscale versions of our images for our experiments. It will
be, however, interesting to compare our results with a
future study using colored images.

Experimental Stage I: Free recall
Subjects

Twenty-two highly motivated California Institute of
Technology students (from 18 to 35 years old) who were
proficient in English served as subjects in Experiment

Stage I. One author (A.I.) was among the subjects. All
subjects (including A.I.) were naive about the purpose of
the experiments until all data were collected.

Apparatus

Subjects were seated in a dark room especially designed
for psychophysics experiments. The seat was approxi-
mately 100 cm from a computer screen, connected to a
Macintosh (OS9) computer. The refresh rate of the
monitor was 75 Hz. All experimental software was
programmed using the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997) and MATLAB.

Procedure

Figure 3 illustrates a single trial of Stage I. An image
from our data set was presented for one of seven different
possible PTs: 27, 40, 53, 67, 80, 107, and 500 ms. For
each trial, the particular PT was randomly selected with
equal probability from these choices. The image was then
masked by one of eight natural image perceptual masks,
constructed by superposing white noise band-passed at
different spatial frequencies (Li et al., 2002; VanRullen, &
Koch, 2003). The subject was then shown a screen with
the words:

Please describe in detail what you see in the picture.
Two sample responses are: 1. City scene. I see a big
building on the right, and some people walking by

Figure 3. A single trial in Stage I: A fixation cross appeared for about 250 ms. An image from our data set was then presented at the
center, subtending 6- � 8- in visual angle. After a variable PT, the image was masked by one of eight natural image perceptual masks (for
details of the mask, see Li et al., 2002). The time between the onset of the image and the onset of the mask is called the PT. The mask
was presented for 500 ms. Afterward, subjects were prompted to a screen in which they were asked to type in what they had seen of the
image. Subjects were given an unlimited amount of time to write down their responses. When they were ready to continue, they could
initiate the next trial by pressing the space bar.
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shops. There are also trees. Most of the trees are on
the left of the picture, against some background
buildings. 2. Possibly outdoor. I really cannot tell
much. Probably some animals, maybe mammalsI

Subjects were given an unlimited amount of time to
write down their responses.

Each subject was shown all 90 images in the database,
broken into five 22-trial sessions. The images were
presented in random order. At the beginning of each
session, 4 images outside of the database were used to
familiarize the subject with the responses and PTs. Free-
recall responses for these 20 (4 � 5) images were
excluded from all data analysis. Order of image presenta-
tion, as well as the choice of PT for each image, was
randomized among all subjects. Each subject thus con-
tributed one description for each image at one of the PTs.
Overall, our 22 subjects provided 1,980 descriptions; that
is, we obtained between 3 and 4 descriptions for each
image and each PT.

Experimental Stage II: Description evaluation
Subjects

Five paid volunteer undergraduate students from
different schools in the Los Angeles area (from 18 to
35 years old) served as scorers in Experiment Stage II.

As scorers needed to analyze and interpret unstructured
written responses, they were required to be native English
speakers. All scorers were naive about the purpose of the
experiments until all response evaluation was finished.

Apparatus

The scorers’ task was to evaluate and classify the image
descriptions obtained in the previous stage. For this
purpose, they used Response Analysis software that we
designed and implemented for this purpose (Figure 5).
Subjects were seated in a lighted office room. The seat
was approximately 100 cm from a computer screen,
connected to a Macintosh (OS9) computer. The refresh
rate of the monitor was 75 Hz. All Response Analysis user
interface software was programmed using MATLAB and
the GUI toolbox.

Procedure

Our aim was to evaluate free-recall responses in a
consistent and uniform manner for all subjects. To do this,
we assessed the content of all responses with respect to a
standardized list of attributes.

The list of attributes was constructed by the experi-
menters, who examined the entire set of free-recall
responses/descriptions to extract a comprehensive inven-
tory of terms referred to in these descriptions. Most

Figure 4. Attribute tree. The list of attributes was constructed by examining the entire set of free-recall responses/descriptions to extract a
comprehensive inventory of terms referred to in these descriptions.
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attributes described fell into one of six categories:
inanimate objects, animate objects, outdoor scenes, indoor
scenes, visual/perceptual features (i.e., shapes, lines), or
event related (this category comprised a more cognitive
understanding of the picture, in which human behavior
related to the scene was inferred, i.e., social interaction,
sports/games, performances, concert; see Figure 4 for the
entire list of attributes). It goes without saying that this
attribute tree is not a complete reflection of everything
reported by subjects. We chose to focus on descriptions of
sensory information (e.g., shape, shading), objects and
scenes, rather than on more cognitive functionalities such
as emotions. In addition, explicit verbal reports are likely
to indicate a lower bound of perceived information limited
by both short-term memory as well as a natural tendency
of reporting more abstractly than what has been seen.

The attribute list consisted of 105 terms. We organized
these attributes into a hierarchical tree structure, where the
highest level represented the most general level of descrip-
tion (e.g., inanimate object); the intermediate stages
exhibited a greater degree of specificity (e.g., manmade
inanimate object, building); and the lowest level corre-
sponded to the most detailed level of description (e.g.,
Capitol building). This taxonomy schema stems from
conventional notions of object and scene categorization, as
originally developed by Rosch (1978) and Tversky and
Hemenway (1983), predicated on the superordinate level,
the entry (or basic) level, and the subordinate level. The
findings of these authors formed the basis of our hierarch-
ical classification for the animate object, inanimate object,
indoor, and outdoor branches of the tree. The last two
branchesVsensory related and event relatedVhave
received less investigation and, thus, were classified
parsimoniously with only two levels: more general (e.g.,
sensory related) and more detailed (e.g., lines, shapes).

Each of the five scorers read every response (22 subjects
who each responded to the same 90 images, for a total of
1,980 responses) and assayed them for mention or
description of each attribute as well as correctness. The
scorer was guided through this task with the Response

Analysis interface tool (Figure 5). For each response,
the scorer proceeded as follows: the first screen contained
the text of one of the responses, the image described in the
response, and a box with labels for the most general
attributes: indoor, outdoor, animate object, inanimate
object, event related, and shape related. Next to each
attribute, a button allowed the scorer to indicate whether
the attribute had been described in the written response. If
an attribute was checked as Bdescribed,[ the scorer was
additionally required to indicate whether the description
of the attribute was either an Baccurate[ or Binaccurate[
depiction of the corresponding image. This completed the
first screen. For any attribute checked, a successive screen
was displayed, which, again, comprised the text of the
response and the image, but instead of the general
attributes, the next level of more detailed attributes was
used; for example, if inanimate object had been checked
in the first screen, a following screen would have
contained the labels manmade and natural (Figure 4),
for which the user would again be prompted to indicate
whether these attributes were described in the response,
and if so, whether they were accurately or inaccurately
described. If the user had then checked natural, a
following screen would have contained the text of the
response, the image, and the next level of attributes: body
of water, plant, specific plant, mountain/hill, and distinc-
tive texture. The entire branch was thus traversed.

If, on the first screen, the scorer had also checked indoor,
then subsequent screens would have also displayed the text
of the response, the image, and the next level of attributes:
store, household room, kitchen, office/classroom, technical
environment, dining/restaurant, station/plaza, library, and
performance venue. In this manner, the relevant portions of
the tree were traversed, one branch at a time. This process
was repeated for each response.

As explicated earlier, three to four responses were
provided for a given image at a given PT. For a given
attribute, each scorer judged whether each of these three
to four responses accurately described the attribute in the
respective image. The percentage of responses rated as

Figure 5. Experiment Stage II: Evaluating the free-recall responses. This figure is best viewed with magnification.
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accurate measured the Bdegree[ to which the attribute was
perceived in this image. This initial score thus reflected a
particular image, PT, and scorer. The scores were then
normalized: The seven scores for a given image (one for
each PT) were divided by the highest score achieved for
that image (across all PTs). All evaluation scores were
therefore between 0 and 1. Due to this Bwithin-image[
normalization, inherent differences in Bdifficulty[ of
perceiving or understanding scenes between different
images were eliminated.

These scores were then utilized in three general kinds of
analyses, depending on the issues we were interested in
exploring. Most questions we asked fall into the realm of
characterizing the content of subject’s perception. Hence,
in the first type of analysis, the evaluation scores were
further averaged over images so that the averaged evalua-
tion score represented the degree to which the attribute was
perceived at a given PT across the entire image set.
Finally, the scores were averaged over all five scorers.

Because this is the primary analysis employed, we
will focus on the evaluation of one attribute, building, to
better illustrate the parameters just discussed (depicted in
Figure 6).

On the x-axis are the seven PTs for which images were
displayed. The y-axis reflects normalized accuracy evalu-
ation score. For the PT of 80 ms, for example, each scorer
sees roughly three responses for each image. For each
response, the scorer determines whether the attribute
building was accurately reported with respect to the
corresponding image (the other 104 attributes were also
checked, but we will not follow those for the purposes of
this example.) Suppose that the scorer indicates that
building was described accurately in only one response.
The initial evaluation score for the attribute building for
this image at PT 80 ms is therefore 1/3 or 0.33. Suppose
also that the maximum accuracy score achieved in
describing this image occurred at PT 500 ms, where two
thirds of the responses accurately reported a building. This
maximum score of 0.67 would be used to normalize all
scores so that the evaluation score PT 80 ms is now 0.5
and the score at 500 ms is 1.0. This normalization allows
each image to be its own baseline; therefore, differences in
the quality of the image (i.e., simple vs. cluttered, see
Figure 7) will not affect scores. Finally, all normalized
building scores at PT 80 msVone for each imageVare
averaged to obtain the final evaluation score at this PT for
this particular scorer.

This process of normalization per image and then
averaging over all images is done for each PT. Again,
the resulting values are per scorer. Thus, in Figure 6, the
yellow, blue, green, cyan, and magenta lines each
represent the normalized evaluation scores (averaged over
images) for one scorer. These curves are then averaged
over all the scorers. The resulting means are plotted in the
red line in Figure 6, with error bars representing standard
error of the mean.

Figure 6. A sample score plot for the building attribute.

 

 

Figure 7. Subject description samples. In the first row, the scene is relatively easy. Subjects are nearly as good at perceiving the details of
the scene at PT 107 ms compared to PT 500 ms. In the second row, the scene is more cluttered and complex.
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In addition, there is a black line resting at the bottom of
the plot. It consists of scores given by our scorers when
the responses/descriptions are randomly matched to the
images. This serves as a control in the response evaluation
process. As this evaluation process is subjective, scorer
bias in judging accuracy of responses could be a potential
confound; that is, a scorer might be inclined to generally
interpret vague or nebulous responses as Bprobably
correct,[ giving Bthe benefit of the doubt[ even for in-
accurate descriptions. To probe for this bias, we presented
each scorer with 220 responses that were paired with an
incorrect image (e.g., not the image the subject was view-
ing when making the response). The scorer had to indicate
whether the response accurately described the image
with which it was presented, the same task as for the real
response–image pairings. Because these are incorrect pair-
ings, responses associated with longer PTs will not con-
tain a more accurate description of any attribute (in this
case, building) of the image with which it is presented to
the scorer. Therefore, assuming no scorer bias, the line
should remain low and flat, as observed in Figure 6. The
control curves from all scorers were averaged.

Weibull cumulative density functions are also fitted to
the evaluation scores for each attribute to further confirm
trends indicated by the scores across PTs (see Appendix C
for details).

The second kind of analysis is performed to contrast
subjects’ perception with reality, that is, to determine if
systematic discrepancies exist between the stimulus and the
perception of the stimulus. For this objective, each image is
examined separately, and the normalized evaluation scores
for that image are compared with the Bground-truth[
classification of that image (Observation II results from this
kind of analysis). As an example, we take the attributes
indoor and outdoor. The process of arriving at a normal-
ized evaluation score for each image at a given PT has
already been explicated; these scores are then averaged
over all scorers, reflecting essentially the percentage of
responses indicating that the attribute was perceived in this
image. Ground-truth is determined in the following way:
for each image, we take all responses of all subjects at PT
500 ms. If most of the subjects accurately described the
image as Boutdoor,[ then the ground-truth label for the
image is outdoor. The same is true for the Bindoor[ images.
For each PT, a scatter plot is generated (e.g., Figure 9a). On
the x-axis, we plot the percentage of responses describing
the image as outdoor, and the y-axis reflects the percentage
of responses describing the image as indoor. Each dot
represents an imageVred dots correspond to ground-truth
outdoor images, green dots to ground-truth indoor images.
In this way, we can observe how subjects perceive ground-
truth indoor and outdoor images and how this perception
changes as a function of PT (more detailed explanation
follows in Observation II).

Our third form of analysis investigated the correlation
between subjects’ perception of various kind of attributes.
In particular, we were interested in subjects’ perception of

scene context versus their perception of objects within the
scene and whether separate and independent mechanisms
operated for these two kinds of perception (Observation IV
employs this kind of correlation analysis.) To do this,
we created a scatter plot for each PT (e.g., Figure 17a).
Each dot on the scatter plot represents one image. One of
the attributes, for example, scene, is taken as a bench-
mark. The red dots represent the images with the top 20%
of evaluation scores for scene, at the baseline condition
(PT 500 ms). The green dots are the images with the
lowest 20% of evaluation scores for scene at the baseline
condition. The black dots represent the remaining images.
These images’ evaluation scores for the scene attribute are
plotted according to the x-axis; their object attribute
scores are plotted against the y-axis. On each scatter plot,
we also show the correlation coefficient (between scene
and object scores) computed across all images. This can
be done for any pair of attributes.

We now detail the observations that followed from
these various analyses.

Results and Observations

Observation I: The ‘‘content’’ of a single
fixation

How much of a scene can be initially perceived within
the first glance?

Bar and Ullman (1996) and Friedman (1979) proposed
that early scene recognition involves the identification of
at least one Bobligatory[ object. In this Bpriming model,[
the obligatory object serves as a contextual pivotal point
for the recognition of other parts of the scene (Henderson
& Hollingworth, 1999). There is also evidence that objects
could be independently recognized without facilitation by
global scene context (Henderson & Hollingworth, 1999).
Biederman’s findings however implied that some kind of
global context of the scene is registered in the early stages
of scene and object recognition (Biederman, 1972). Given
the discrepancy between all these models, it is unclear
whether the first glance of a scene comprises a mere list of
objects, relations of objects, and/or more global informa-
tion such as background textures and/or layout of space
(Wolfe, 1998a).

From subjects’ reports of scenes in a single fixation, we
try to extract as much information as possible to shed light
on this question. While the average fixation length during
scene viewing can be as high as 339 ms (Rayner, 1984),
numerous previous studies have used PTs between 100
and 200 ms to investigate the effect of single fixation
(Biederman, 1982; Boyce et al., 1989; Potter, 1976). Here,
we follow the tradition and use 107 ms as an estimate of
the length of the first fixation of a scene. Five hundred
milliseconds is chosen as a baseline PT for viewing a
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scene. It is commonly accepted that this amount of time is
sufficient for perceiving a natural scene and most of its
contents (e.g., Biederman et al., 1983; Potter, 1976;
Thorpe et al., 1996). It is also worthwhile to point out
that the 500-ms baseline value is, in a way, too rigorous a
criterion. As opposed to the 107-ms viewing time,
subjects can make a few saccades within 500 ms. The
ability to make eye movements affords them a dispropor-
tionate advantage to access visual information from the
scene beyond just a longer PT. Our subsequent findings,
therefore, are more likely to be a lower limit, and not an
upper limit, of the perceived contents. Figure 7 shows two
different example scenes and sample descriptions at the
two PTs. In the first row, the scene is grasped with relative
ease. Subjects are nearly as good at perceiving the details
of the scene at PT 107 ms compared to the baseline viewing
condition. In the second row, the scene is much more
cluttered and complex. We see that the extra PT for PT
500 ms helps greatly in perceiving the details of the scene.

Several attributes were examined, from five branches of
the analysis tree and at various levels of abstraction, from
superordinate to subordinate. The evaluation scores for
each of these attributes were averaged over all images and
all scorers. The scores for PT 107 ms and for PT 500 ms
were compared; a pair of bars representing the scores at
these two PTs is plotted for each attribute of interest.

In Figure 8, we summarize general trends noted
through analyzing subject data. In Figures 8a and 8b,
we show these comparisons for objects. In the super-
ordinate category of animate objects (Figure 8a), many
attributesVparticularly those related to peopleVare
equivalently perceived within a single fixation as compared
to the baseline viewing condition. Three attributes differ
weakly in a one-way ANOVA: animal, F(1,8) = 7.70,
p = .024, mammal, F(1,8) = 6.16, p = .04, and gender/age,
F(1,8) = 9.73, p = .01, and two others strongly differ:
bird, t(8) = 73.32, p G .001, and dogs/cats, F(1,8) = 33.98,
p G .001 (one-way ANOVA). Whereas several detailed
attributes of people, such as ethnicity, appearance, and
body figures, are perceived with adroitness, recognition of
nonhuman animals does not appear to enjoy the same ease.
Entry-level animals such as dogs, cats, and birds are more
reliably discriminated with longer PTs, with dogs and cats
being particularly poorly recognized at 107 ms. These
propensities speak to a large body of literature claiming
an advantage for visual processing of faces and humans
(Farah, 1995; Farah, Wilson, Drain, & Tanaka, 1998; Ro,
Russell, & Lavie, 2001; Downing, Jiang, Shuman, &
Kanwisher, 2001).

Figure 8b displays the trends for the inanimate objects
contained in the image data set. Several attributes
pertaining to inanimate object categories are perceived
within a single fixation, namely, the superordinate
category inanimate natural objects, plus more basic-level
objects such as rocks, plants, mountain/hills, grass, sand,
and snow, 4.24ej4 G F(1,8) G 4.02, p 9 .05 (one-way
ANOVA). In the realm of manmade objects, the findings

are less clear. Superordinate levels, such as manmade
inanimate object, furniture, and structures (roads, bridges,
railroad tracks), and the basic-level attribute car are more
accurately reported at 500 ms than at 107 ms (p G .01),
except for car, which is weakly significant, F(1,8) = 6.10,
p = .04. Other superordinate- and entry-level objects, in-
cluding vehicle, building, chair, and desk or table, ex-
hibit equal accuracy at both PTs (p 9 .05). The lack of an
unequivocal advantage for recognition of basic-level
categories versus superordinate categories connotes a
discrepancy from Rosch’s (1978) study on object catego-
ries. We observe that one of the main differences between
our setup and that of Rosch is the clutter and fullness of
our scenes. In her study, objects are presented in isolation,
segmented from background. In our setup, objects are viewed
under more natural conditions, with clutter and occlusion.

Figure 8c displays comparisons for the scene environ-
ments portrayed in our data set. At PT 107 ms, subjects
easily name the following superordinate-level categories:
outdoor, indoor, natural outdoor, and manmade outdoor.
In addition, scenes such as office/classroom, field/park,
urban streets, household rooms (dining rooms, bedrooms,
living rooms), and restaurant are recognized within a
single fixation, 0.20 G F(1,8) G 5.23, p 9 .05 (one-way
ANOVA). Only shop/store and water scenes require
longer presentations, 9.93 G F(1,8) G 50.40, p G .02,
except for sky, which is weakly significant, F(1,8) = 6.73,
p = .03 (one-way ANOVA). Compared to objects then,
scene context is more uniformly described by our
subjects in a single fixation. Our results suggest that
semantic understanding of scene environments can be
grasped rapidly and accurately after a brief glance, with
a hierarchical structure consistent with Tversky and
Hemenway (1983).

We have seen that both objects and global scene
environments can be processed given a single fixation.
These attributes, however, are explicitly denoted by
properties of a still image, where the physical features
defining an object or the quintessential components of an
environment can be readily rendered. Can a more
cognitive appraisal of the transpiring scenario be inferred
with the same ease? In Figure 8d, we look at attributes
related to human activities and social events. Given our
data set, only five types of activities are included: sport/
game, social interaction, eating/dining, stage performance,
and instrument playing. Of the five activities, sport/game,
social interactions, and, possibly, stage performance can
be reported after a single glance, 0.25 G F(1,8) G 1.54,
p 9 .05 (one-way ANOVA). Only one image each involved
humans either eating or playing instruments; thus, these
event-related attributes were not statistically meaningful
and excluded from our analysis.

In summary, within this brief period, humans seem to
be able to recognize objects at a superordinate category
level as well as at a variety of basic category levels.
Furthermore, a single fixation seems sufficient for recog-
nition of most common scenes and activities, many of
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them coinciding with the basic-level scene categories
suggested by Tversky and Hemenway (1983).

Observation II: Outdoor and indoor
categorization

In recent years, several computer vision studies have
suggested efficient algorithms for categorizing scenes,

exploiting both global and local image information (Fei-Fei &
Perona, 2005; Oliva & Torralba, 2001; Szummer &
Picard, 1998; Vailaya, Figueiredo, Jain, & Zhang, 2001;
Vogel & Schiele, 2004). Although these methods shed
light on how coarse classification of scenes can be
achieved in a feed forward fashion after supervised
learning, little is known in the human vision literature
about the actual cues and mechanisms that allow categorization
of different scene classes. In their work on scene taxonomy,

Figure 8. Fixation results for animate objects (a), inanimate objects (b), scenes (c), and social events and human activities (d).
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Figure 9. Categorization results of indoor and outdoor scenes. Each sub-figure illustrates the result in a specified PT. The top panel of
each sub-figure is a scatter plot of the categorization results. Each dot represents an image in the database: red for ground-truth outdoor
and green for ground-truth indoor. A diamond shape with error bars indicates the average performance. The bottom panel shows the four
indoor images that were most often confused as outdoor scenes given this PT.
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Tversky and Hemenway (1983) examined in particular
people’s understanding of the disparate components of indoor
and outdoor scenes. Their methods, however, treated indoor
and outdoor environments symmetrically, presuming no
obvious preference or bias.

We examined how the outdoor and indoor images in our
data set were classified by our subjects and how this
classification changed as a function of PT. For each
image, we are able to ascertain the percentage of subjects
that labeled the image as indoor or as outdoor at a
particular PT time. Figure 9 shows how the images are
perceived at different times.

The recall performances for indoor versus outdoor
scenes are shown in Figure 9. We sampled the responses
as a function of stimulus PTs: 40, 67, 107, and 500 ms. At
short PTs, few subjects mentioned the indoor/outdoor
category, whereas, at 500 ms, virtually all did. At the
baseline PT of 500 ms (Figure 9d), most of the red dots

are located on the x-axis, as subjects correctly identified
the outdoor images as outdoor. Similarly, most of the
green dots are located on the y-axis. In Figures 9a–9d, we
observed a very clear trend of an early bias for outdoor
images. At PT 40 ms, if subjects chose to make the
indoor/outdoor dichotomous distinction in their responses,
they tended to identify asymmetrically indoor images as
outdoor (one-tailed t test between the x-axis values of the
indoor images in Figure 9a and the null hypothesis value
0, p ¡ .001), despite the fact that there is a similar
number of indoor and outdoor images in the data set.
This preference for outdoor labeling continues even at
PT 107 ms (Figure 9c, one-tailed t test, p ¡ .001). In
Figures 9a–9d, we also present the four indoor images that
were most frequently misclassified as outdoor at the
corresponding PT. Several of them are consistent over a
range of PTs. By considering these images, it is possible
that predominantly vertical structures give rise to the

Figure 10. Categorization results of manmade outdoor and natural outdoor scenes. Each dot represents an image in the database: red
dots are manmade outdoor scenes and green are natural outdoor scenes. A diamond shape with error bars is also plotted for each class
of images (manmade outdoor and natural outdoor) to indicate the average percentage.
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outdoor percept more easily when there is less than
107 ms for viewing the image. In Figure 11c, we
summarize the change of indoor and outdoor classification
over PT in one plot. Each diamond represents the average
performance score at one PT.

While we observe this strong bias in favor of outdoor
over indoor classification of natural scenes for short display
times, we do not see a large difference between manmade
outdoor over natural outdoor images (Figure 10). Subjects
labeled both natural and manmade outdoor scenes with
similar accuracy. Given shorter PTs (G107 ms), manmade
outdoor scenes are at times confused with natural outdoor
scenes, hence a lower average performance. But overall,
the trend is not as pronounced as the bias between indoor
and outdoor scenes (Figure 11b).

Figures 11c and 11d summarize average classification
results for indoor versus manmade outdoor images and for
indoor versus natural outdoor images, respectively. Unlike
Figure 11a, there is no indication of a bias in any of these

conditions (one-tailed t test between x-axis values of the
indoor images and the null hypothesis 0, p 9 .05 for all
PTs). This suggests that whereas indoor scenes tend to be
confused as outdoor scenes, there is little confusion with
manmade or natural outdoor scenes.

From where does this bias arise? Given the limited
amount of information available when stimuli are pre-
sented very briefly (less than or about a single fixation),
did outdoor pictures have an advantage over indoor
pictures because subjects could perceive low-level, sen-
sory-related information more clearly? Or was it due to
greater ease in identifying objects in the outdoor scenes
versus the indoor scenes, as the priming model would
predict (Bar & Ullman, 1996; Friedman, 1979)? Figure 12
illustrates the evaluation results in both indoor and
outdoor scenes for sensory-level information (Panel a)
and object-level information (Panel b), from the shortest
PT (27 ms) to the maximum (500 ms). For sensory
information perception, we see that the evaluation scores

Figure 11. Summary plot of average categorization performances of all seven PTs. (a) Indoor versus outdoor scenes; (b) manmade
outdoor versus natural outdoor scenes; (c) indoor versus manmade outdoor scenes; (d) indoor versus natural outdoor scenes.
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for both indoor and outdoor images do not differ
significantly at most PTs except for PTs 53 and 67 ms
(according to Figure 12). Similarly, little trend is detected
with respect to object-level perception (except for PT
67 ms). These results indicate that although there is an
obvious preference for discerning outdoor images at short
PTs, this bias does not seem to stem from a differential
ability to perceive the sensory information or object
contents of the different environments.

Lastly, we would like to rule out simple image-level
cues such as global frequency or grayscale/intensity value
statistics in the explanation of our observed bias. In
Appendices A and B, we show that there is little sign of
such bias in image-level statistics by using two simple
computational models for indoor and outdoor scene
categorization.

Observation III: Sensory-level recognition
versus object/scene-level recognition

Humans possess a superb ability in categorizing com-
plex natural scenes. Thorpe et al. (1996) have demon-
strated that the presence of an animal (or vehicle) in a
photograph can be rapidly detected by subjects, and a
neurophysiological correlate of this detection is observed
in the prefrontal cortex area in as little as 150 ms. Further
studies suggest that a low-level, object-independent
mechanism precedes the detection or recognition of
semantically meaningful scene stimuli (Johnson &
Olshausen, 2003; VanRullen & Thorpe, 2001).

Speaking to a similar issue, traditional models of object
recognition posit that low-level visual processing precedes
higher level object recognition, by which segmentation
would occur before recognition (Driver & Baylis, 1996;
Nakayama, He, & Shimojo, 1995; Rubin, 1958). Other
evidence suggests that semantically meaningful object
recognition might in turn influence low-level, object-
independent segmentation (Peterson & Gibson, 1993,
1994; Peterson & Kim, 2001). Recently, Grill-Spector
and Kanwisher (2005) have found that humans are as
accurate at categorizing objects as at detecting their
presence and concluded that both processes require a
similar amount of information and the same length of
neuronal processing time. A key question following these
findings is that of the natural evolution of scene
perception: What is the time course of object versus more
global scene recognition?

The conclusions above are drawn from experiments that
rely on a multiple forced-choice paradigm, in which
subjects are given a short list of possible answers before
viewing the image (e.g., Biederman, Rabinowitz, Glass, &
Stacy, 1974). Intuition tells us that different levels of
recognition might occur upon processing different levels
of information. While coarser or lower frequency infor-
mation might suffice for the detection of a dog, it is not
necessarily adequate to identify the dog as a husky or a
German shepherd. We would like to, therefore, scrutinize
subjects’ descriptions of natural scenes at different PTs to
investigate the evolution of different levels of recognition,
that is, higher level conceptual information (e.g., object
identification, object categorization, scene categorization)
versus low-level or Bsensory[ information (e.g., shape
recognition/parsing).

In the Method section, we gave a detailed account of
how subjects viewed and recorded their responses to each
of the natural scene images in our database. Figure 13
shows three of the images and some of their free-recall
responses at four different PTs. When the PT is short (e.g.,
PT = 27 or 40 ms), shape- and low-level sensory-feature-
related (such as Bdark,[ Blight,[ and Brectangular[)
terminology predominates in the free-recall responses.
As the display time increases, subjects more often identify
objects as well as scene categories. More conceptual and
semantic terms such as Bpeople,[ Broom,[ and Bchair[

Figure 12. Sensory information and object perception in outdoor
and indoor scenes. (a) Sensory information perception performance
comparison between indoor and outdoor scenes across all PTs.
(b) Overall object recognition performance comparison between
indoor and outdoor scenes across all PTs.
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appear with increasing frequency. We quantify the above
observation by comparing the evaluation scores of the
shape/sensory-related attribute, as a function of PT, with
scores of more semantically meaningful attributes.

Figure 14 summarizes our results. The y-axis of each
panel is the evaluation score of each selected attribute(s).
For comparison, we plot the sensory information response
in all three panels of Figure 14. The general trend in
sensory information accuracy indicates that its score
decreases, relative to other attributes, as the PT increases;
subjects cease to report shape- or sensory-related infor-
mation when they are able instead to ascribe higher level
descriptions to the image. In contrast, evaluation scores
for attributes such as object names and scene types rise as
the PT lengthens. The accuracy and frequency with which
these attributes are reported increase as more information
becomes available.

In Figure 14a, we compare the responses of low-level
visual/sensory information to the high-level information
related to object and scene superordinate categorizations.

Sensory information dominates over object informa-
tionVobject, inanimate object, and animate object curves
until PT 53 ms, 2.21 G F(1,8) G 36.86, p G .05 (one-way
ANOVA; also confirmed by Weibull fit, see Appendix C
for details). Scene information is more heterogeneous:
The outdoor scene attribute becomes indistinguishable to
that for sensory-level information at PT 53 ms, F(1,8) =

0.003, p = .96 (one-way ANOVA; confirmed by Weibull
fit, Appendix C), whereas the indoor scene curves over-
take the sensory curve slightly before 80 ms, F(1,8) =
36.86, p = .03 (one-way ANOVA; confirmed by Weibull
fit, Appendix C). Once again, we find an obvious
advantage for accurate report of outdoor scenes over
indoor scenes, confirming Observation II.

Figures 14b and 14c allow us to inspect more closely
scene and object perception at finer levels of detail. While
outdoor recognition begins at about 53 ms, all other levels
of scene recognition transpire at approximately 67–80 ms
(confirmed by Weibull fit, Appendix C). In an analogous
assessment, Figure 14c displays evaluation scores as a
function of PT for object information. Somewhere
between 40 and 67 ms PT, various levels of object
perception (except for some indoor furniture categories)
become more pronounced than sensory-level information
(at PT 67 ms, animate and inanimate objects are both
significantly more reported than sensory information),
5.34 G F(1,8) G 7.30, p G .05 (one-way ANOVA; confirmed
by Weibull fit, Appendix C). This switch in the predom-
inant information reported transpires with shorter PTs as
compared to reports of scene-related attributes.

While our results cannot attest directly for the time
course of information processing while viewing an image,
our evidence suggests that, on average, less information is
needed to access some level of nonsemantic, sensory-related

Figure 13. Samples of subjects’ free-recall responses to images at different PTs.
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information in a scene compared to semantically mean-
ingful, object- or scene-related information. This result
differs from what Grill-Spector and Kanwisher (2005)
reported in their study. One major difference in our
experimental design is that their subjects are forced to
make a multiple choice, whereas our subjects are
instructed to write down whatever they recall. In addition,
in their database, scenes that contain objects have very
different statistics compared to the scenes that do not
contain objects, namely, randomized pixels. An earlier
study by Bruner and Potter (1964) has already suggested
that sensory attributes are more likely to be reported when
the viewed scenes are blurred (as against nonblurred).
Moreover, studies have suggested that some reliable
structural information of a scene may be quickly extracted
based on coarse spatial scale information (Oliva & Schyns,
2000). Consistent with these findings, our data seem to
also show that coarse spatial information about shape
segmentation can be perceived with less presentation of
the image.

Observation IV: Hierarchies of objects
and scenes

It has been shown that some level of categorization of
objects is most natural for identifying the object as well as
for discriminating it from others. Rosch developed this
category hierarchy for object recognition and identifica-
tion; Tversky and Hemenway (1983) suggested a similar
taxonomy for natural environments. We were therefore
interested to see if any correlation existed between our
subjects’ reports of scene and object recognition, as a
function of PT, and the findings in the studies of Rosch
(1978) and Tversky and Hemenway (1983). We follow the
same method described in the Observation III section and
the Experimental Stage II section to track perceptual
content of subjects’ responses over time.

First, we explored the relationship between levels of the
animate object hierarchy. We show in Figure 15a three
levels of animate objects: the superordinate levels animate
objects, animal, and mammal. At PT 27 ms, there exists
an advantage for more accurate and frequent report of
animate objects versus the other three categories (p G .05;
confirmed by Weibull fit, Appendix C). This advantage
decreases by PT 40 ms, although it still retains statistical
significance with respect to animal and large mammal:
animal, F(1,8) = 9.99, p = .01, mammal, F(1,8) = 1.25,
p = .30, large mammal, F(1,8) = 6.55, p = .03 (one-way
ANOVA; confirmed by Weibull fit, Appendix C). In short,
given a very limited amount of information, subjects tend
to form a vague percept of an animate object, but little
beyond that.

A comparable advantage is found for manmade inani-
mate objects. Figure 15b shows that while the evolution of
structure and road/bridge are very similar, subjects tend to
accurately report an overall impression of a manmade

Figure 14. Perceptual performances of different attributes across
all seven PTs. The perceptual performance is based on evaluation
scores detailed in the Method section. The sensory-related
perception is plotted as a benchmark in all three panels.
Perceptual performances for (a) overall object and scene attrib-
utes, (b) scene-level attributes, and (c) object-level attributes are
shown. The black line (at the bottom) of each panel corresponds
to the random control responses.
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inanimate object rather than provide a more detailed level
of categorization. At short PTs (27 and 40 ms), recog-
nition of all levels of this hierarchy is poor. With longer
PTs (from PT 53 ms onward), recognition improves,
preferentially for the most superordinate level of
Bmanmade inanimate object[ (significantly greater than
structure and road/bridge for PTs 53–500 ms, p G .05,
except vs. road/bridge at 80 ms, p = .30, and at 500 ms,
p = .08; confirmed by Weibull fit, Appendix C). The trend
is replicated in the hierarchy of structure recognition
(Figure 15d). In this plot, we observe that there is very
clear gradation in terms of perception accuracy among
buildings, distinctive architectural styles (e.g., Gothic
building, triangular roof), and specific buildings (e.g.,
Capitol Hill, Golden Gate). As with Figure 15b, accuracy
is poor for all levels at PT 27 ms. From 40 to 80 ms,
Bbuilding[ evaluation scores are significantly greater than
those for the finest level of descriptive resolution

Bspecific building[ (p G .05; confirmed by Weibull fit,
Appendix C); for the earlier part of the same interval
(53 and 67 ms), building perception is also superior to
the intermediate level attribute of Bdistinctive architec-
tural features[ (p G .05; confirmed by Weibull fit,
Appendix C). Less overall trend is seen in natural
inanimate objects, largely due to the high noise level of
the plot (Figure 15c).

Our results on object hierarchies and the change of
perceptual accuracy over increasing PTs are not neces-
sarily in conflict with the findings of Rosch (1978). In
her study, the goal is to determine the level of categorical
representation that is most Binformative[ and useful to
identify and distinguish an object. An unspoken assump-
tion is that this categorization is achieved given full
amount of perceptual information. In our setup, however,
subjects do not have unlimited access to the images.
Under this setting, coarser level object categorization is in

Figure 15. Perceptual performances of different object attributes across all seven PTs. The perceptual performance is based on evaluation
scores detailed in the Method section. The shape-segmentation-related perception is plotted as a benchmark in all three panels.
(a) Animate-object-related attributes; (b) manmade-inanimate-object-related attributes; (c) natural-inanimate-object-related attributes;
(d) building and subordinate building categories.
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general more accurate than finer level ones. As more
information becomes available (i.e., longer PT), this
difference becomes smaller.

We adopted a similar strategy in examining the
evolution of scene-related perceptions, as represented in
Figure 16. Figure 16a shows, as a function of PTs, the
accuracy scores of Bindoor scenes[ and three different
Bbasic-level[ indoor environments: Bhousehold rooms[
(e.g., living room, bedroom), Boffice/classroom,[ and
Bdining/restaurant[ (Tversky & Hemenway, 1983). Unlike
the hierarchical perception of objects, different levels of
indoor scenes do not exhibit clear discrepancies in
recognition frequency and accuracy at any PT (p 9 .05;
confirmed by Weibull fit, Appendix C). The accuracy
scores for store show a minor but significant deviation
from the indoor curve at lesser PTs (e.g., at 27 and 53 ms,
p G .05). However, only three images in our data set
correspond to store environments, and it is difficult to
generalize from such a small sample.

Figure 16b shows the evaluation results for different
levels of natural outdoor scenes (natural outdoor scene,
field, beach, and water). The coarsest level of the
hierarchy, Boutdoor scene,[ has a clear advantage over
all other levels from the shortest PT until about 500 ms
( p G .05, except at 80 ms: outdoor natural, p = .11,
water, p = .14; confirmed by Weibull fit, Appendix C).
However, at more detailed levels of the hierarchy, the
situation is analogous to the indoor scenario. Once
subjects have classified an image as a natural outdoor
scene, they are capable of further identifying its basic-
level category. There is no statistical difference among
the evaluation scores for natural outdoor and many of its
subordinate categories such as field, mountains, and
water (an exception is the entry-level scene Bbeach,[
which is significantly lower at all PTs until 107 ms,
p G .05).

A commensurate hierarchical trend is observed in
manmade outdoor scenes (Figure 16c). The perceptual

Figure 16. Perceptual performances of different scene attributes across all seven PTs. The perceptual performance is based on evaluation
scores detailed in the Method section. The shape-segmentation-related perception is plotted as a benchmark in all three panels.
(a) Indoor scenes, (b) outdoor natural scenes, (c) outdoor manmade scenes.
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accuracy scores of manmade outdoor scene, urban centers,
skylines, industrial environments, and other manmade
outdoor environments are essentially indistinguishable. A
few instances of significant but small differences
were noted between manmade outdoor and industrial
and between manmade outdoor and Bother manmade[
scenes, for example, for other manmade, F(1,8) = 27.41,
p G .001 (one-way ANOVA; confirmed by Weibull fit,
Appendix C). These categories comprised images of
construction sites, parking lots, and swimming pools;
such scenes have not been mapped out in terms of their
taxonomy and could conceivably be specific subordinate
rather than basic-level categories. This may in part
account for these findings.

Tversky and Hemenway (1983) have suggested a
taxonomy of scenes similar to that of objects. Their study
follows a similar line of arguments as Rosch (1978). Our
observations, however, imply that scene perception differs
from object perception. While object recognition reveals
some hierarchical structure, only the overall categoriza-
tion of outdoor environment seems to need less informa-
tion than recognition of other scene types. In general,
superordinate-level scene categories (e.g., indoor, man-
made outdoor, natural outdoor) seem to require the same
amount of information in recognition as the basic-level
scenes (e.g., field, beach, skyline, urban centers).

Observation V: Object and scene perception:
Are they correlated?

Intuitively, much of the meaning of a scene is defined
by the objects that comprise it. Biederman (1972) has
shown that recognition of objects is impaired when
embedded in jumbled scenes rather than coherent scenes.
On the other hand, recent computational work has
suggested that global features such as the spatial frequen-
cies of the images are often sufficient for categorizing
different environments without explicit recognition of the
objects (Torralba & Oliva, 2003). Thus, are the objects in
the scene perceived first? Or is the scene context grasped
independently and perhaps prior to recognizing the objects?
How are the two perceptions related? Such questions have
been open for debate for more than two decades (De Graef,
Christiaens, & d’Ydewalle, 1990; Germeys & d’Ydewalle,
2001; Hollingworth & Henderson, 1999).

If scene and object perception follow from unrelated
and disparate mechanisms as the functional isolation
model states, little correlation between the two should be
observed regardless of the PT. Conversely, if they share
computational resources or facilitate each other in some
way, we expect a correlation between the perception of
objects and scenes. Furthermore, if there is a correlation
between object and scene, we would like to know how this
correlation is affected by the amount of available
informationVin other words, how different levels of
object categorization relate to overall scene perception.

We show the relationship between object-level informa-
tion and scene-level information in Figure 17. Each of the
eight panels in Figure 17 is a scatter plot of the evaluation
scores for these two attributes. The Experimental Stage II
section describes in detail how these plots were obtained.
Each dot on the scatter plot represents one image. If more
than one image falls on the same coordinate, the size of
the dot increases linearly with the number of images.
Figures 17a–17d use the scene attribute as a benchmark.
The red dots represent the images with the top 20% of
evaluation scores for scene, at the baseline condition
(PT 500 ms). The green dots are the images with the
lowest 20% of evaluation scores for scene at the baseline
condition. The black dots represent the remaining images.
From 40 to 107 ms, there is a weak correlation between
the scene attribute and the object attribute, >(40 ms) = 0.38,
>(80 ms) = 0.26, >(107 ms) = 0.29, suggesting that
subjects will perceive objects a little more accurately
when they perceive scenes more accurately. At PT 500 ms,
this correlation becomes nearly 0. However, both scene
and object scores cluster near the upper right corner of
the plot, indicating very high accuracy of perception for
both these attributes. Similar to Figures 17a–17d,
Figures 17e–17h show the relationship between scene
and object recognition using the object attribute as a
benchmark. In this case, the red dots are images that have
the top 20% of evaluation scores for object under the
baseline condition, and the green dots are those images with
the lowest 20% of evaluation scores. Because correlation
does not reflect causality, we should obtain the same
correlation score whether the object or the scene attribute
is used as a benchmark. Our data in Figures 17e–17h show
the same correlation scores as each of their counterpart
plots in Figures 17a–17d.

We can further explore the different relationships
between scene perception and various-level object attrib-
utes at different PTs (Figure 18). The x-axis is the log
scale of PT times, ranging from 40 to 500 ms. Most of the
object attributes receive very low evaluation scores at
27 ms, hence the omission. The y-axis is the correlation
score between a given attribute (e.g., inanimate object)
and overall scene perception.

Compared to objects, the inanimate object attribute
possesses a much stronger correlation with scene
perception (average correlation score between 40 and
107 ms is .55 for inanimate object and .30 for overall
object, p G 10ej3). This relatively stronger correlation
between scene and inanimate object perception continues
as we break it down to manmade inanimate objects and
natural inanimate objects. They each have an average
correlation score of .39 (p e .01) and .32 ( p e .04),
respectively (for PT 40 to 107 ms). In Figure 18, we also
show two manmade objects, vehicle and building. Inter-
estingly, whereas building is very similar to manmade
inanimate object in terms of correlation between its
recognition accuracy with scene perception (average
correlation score of .31 for PT 40 to 107 ms, p e .02,
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Figure 17. Object recognition performance versus scene recognition performance at various PTs. Performance is based on evaluation
scores. See the Results and Observations section for detailed explanations. Note that the relatively close to zero correlation (>) for PT
500 ms reflects a mathematical property that when the evaluation scores are close to perfect, little correlation is possible due to the lack of
variance.
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except for PT 107 ms, p = .09), the vehicle attribute
seems to have a near-zero correlation with the scene
(average correlation score of .01 for PT 40 to 107 ms,
.40 e p e .92).

Curiously, the predominantly strong correlation
between inanimate object perception and scene perception
does not hold for those attributes involving animate
objects. At the coarsest level, animate object recognition
has an average correlation score of j.15 with scene
perception (for PT 40 to 107 ms, .02 e p e .77). At various
levels of animate object recognition, the correlations with
scene perception oscillate between no correlation (e.g.,
people, an average correlation of j.08 for PT 40 to 107
ms, .25 e p e .51) and a very weak correlation (e.g.,
animal and mammal, both with an average correlation of
.12 for PT 40 to 107 ms, .12 e p e .92).

Conclusion

We have shown a novel method to study scene
perception. We collected free-recall responses from sub-
jects who were instructed to view 90 different real-world
scenes under different PTs. An independent group of
subjects then evaluated the free-recall responses. From this
approach, we have gleaned several trends, many of which
are consistent with those cited in known literature and with
others that suggest interesting lines of questioning to pursue
in future studies. In this vein, we hope that our design might
broaden the scope of scene perception research.

The gist of gist

Information contained in the gist of a real-world scene
seems to enjoy a tremendous privilege in visual pro-

cessing. Temporally, this privilege is reflected through the
ultrarapid speed with which the brain categorizes natural
scenes (Thorpe et al., 1996). Spatially, this complex scene
categorization is not affected when spatial attention is
deployed elsewhere (Li et al., 2002; Fei<Fei, VanRullen,
Koch, & Perona, 2005). Yet the central question remains
as to what actually constitutes this scene gist. We would
like to suggest that the term Bgist[ is used to denote the
perceived contents of a scene given a certain amount of
viewing time. A sensible and intuitive proposal for a
discrete viewing time is single fixation, as many studies
have shown that much can be seen within a single glance
of a scene (Biederman, 1972; Boyce et al., 1989; Grill-
Spector & Kanwisher, 2005; Li et al., 2002; Thorpe et al.,
1996; VanRullen & Koch, 2003). These experiments,
however, are all conducted with some form of forced
multiple choices. Our observations suggest that a rich
collection of perceptual attributes is represented and rises
to conscious memory within a single fixation. In Obser-
vation I, we have collected a list of scene attributes
perceived by subjects. Beyond a list of objects and scene
environments (Wolfe, 1998b), more cognitive appraisals
of the eventVsuch as social interaction and sports
eventsVcan be recognized effortlessly. It would be highly
interesting for future studies to investigate into the neural
correlates that are responsible for such superb ability of
real-world scene perception.

Shapes, objects, and scenes

A key issue in perception is the neuronal time course a
given perceptual task follows, in other words, the stages
through which a stimulus is processed to manifest as
semantically meaningful concepts.

The ventral visual pathway, linking the primary visual
cortex through the inferior temporal cortex to the
prefrontal cortex, is generally known as the Bwhat[ visual
pathway, as it is responsible for object recognition through
integrating features (Kosslyn, Flynn, Amsterdam, &
Wang, 1990; Mishkin, Ungerleider, & Macko, 1983;
Ungerleider & Mishkin, 1982; Van Essen, 1985). Given
the hierarchical structure of the visual system, many have
proposed a model in which elementary features of objects
are first processed and then bound together for object
recognition (Treisman & Gelade, 1980; Wolfe, 1998b).
An ongoing debate in this picture is whether shape
segmentation is a necessary intermediate step between
low-level feature processing and high-level object recog-
nition (Driver & Baylis, 1996; Nakayama et al., 1995;
Rubin, 1958). Recently, Grill-Spector and Kanwisher
(2005) have found that categorization of superordinate-
to basic-level objects (e.g., vehicle, musical instrument,
bird, car, dog) is as accurate and fast as the mere detection
of the object. Their conclusion is based on an experiment
in which subjects are asked to either choose one of the
possible object categories or respond simply if an object is

Figure 18. Overall correlation coefficients for scene versus objects
and breakdowns.
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detected. Comparing their nonobject distractors, it is
obvious that the low-level image statistics of the dis-
tractors (mostly pixel noise) are drastically different from
the images that contain objects (all containing a central
blob). Given this expectation, subjects are likely to
heighten their search for a centrally located blob when
detecting objects. In our experiments, subjects viewed
freely a naturally cluttered real-world scene. Because our
scenes are highly variable, they cannot expect a centrally
located blob when looking at an image. In Observation III,
we found that shape-related information has a slight
advantage over semantically meaningful information of a
scene. Our data set shows that compared to higher level
semantically meaningful recognition, lower level shape
recognition seems to need less information. This tem-
poral constraint implicates a lower feature-level processing
in facilitation of the initial stages of complex scene
recognition.

Another major question regards object recognition in
cluttered scenes. Several psychological models have been
proposed to suggest different mechanisms of scene and
object perception (Bar & Ullman, 1996; Biederman, 1972,
1982; Friedman, 1979; Hollingworth & Henderson, 1999;
Mandler & Parker, 1976; Palmer, 1975). Supported by
studies of scene consistency and object detection, the
perceptual schema model proposes that expectations
derived from knowledge about the composition of a scene
type interact with the perceptual analysis of objects in the
scene (Biederman, 1982; Boyce et al., 1989; Metzger &
Antes, 1983; Palmer, 1975). This view suggests that scene
context information can be processed and accessed early
enough to influence recognition of objects contained in
scene, even inhibiting recognition of inconsistent ones
(Biederman et al., 1983).

The priming model, on the other hand, proposes that the
locus of the contextual effect is at the stage when a
structural description of an object is matched against long-
term memory representations (Bar & Ullman, 1996;
Friedman, 1979). Regardless of the mechanism, both the
priming model and the perceptual schema model claim that
scene context facilitates consistent objects more so than
inconsistent ones. These theories predict that we should
observe a correlation of object identification performance
with scene context categorization performance.

In contrast, a third theory called the functional isolation
model proposes that object identification is isolated from
expectations derived from scene knowledge (Hollingworth
& Henderson, 1999). It predicts that experiments examin-
ing the perceptual analysis of objects should find no
systematic relation between object and scene recognition
performance (Hollingworth & Henderson, 1999).

In this article, we do not attempt to resolve the debate
between these models directly. Instead, we look at the
correlation between subjects’ perception of different levels
of object categorization with scenes and find a weak but
significant correlation (Figure 17) at and up to PTs of
107 ms. This correlation might suggest several possibilities:

(i) object and scene perceptions might share at least some
resources in processing and/or (ii) object (or scene) percep-
tion facilitates processing of scene (or object) perception.

In general, the question of the processing stages of
cluttered scenes is still largely unsolved. Our experiments
add evidence that there might exist a mutual facilitation
between overall scene recognition and object recognition.
In addition, both low-level shape- and sensory-related
processing seem to require less information and, possibly,
less time compare to more high-level, semantically
meaningful categorizations of objects and scenes. Tradi-
tionally, scene comprehension tends to be viewed in a
serial fashionVin the order of sensory information, object
features, objects, and the overall scene. Many new studies
have now suggested that contrary to this view, high-level
perception of natural scenes might be a highly efficient
and parallel process (Grill-Spector & Kanwisher, 2005; Li
et al., 2002; Rousselet, Fabre-Thorpe, & Thorpe, 2002;
Thorpe et al., 1996). It would be interesting to examine an
alternative hypothesis in which most of the recognition
stages occur in parallel and constantly feed back informa-
tion to each other to enhance the overall recognition of
various components of the scene. In this possible scenario,
early sensory information extraction stages still precedes
most of the semantic recognition stages. But as soon as
there is any information for any possible level(s) of
recognition, our brain takes advantage of this.

Two puzzling asymmetries?

In Observation II, we observe a strong preference for
outdoor scenes over indoor scenes when visual information
is scarce. Subjects seem to assume by default that an
ambiguous image is likely to be outdoor than indoor. This
effect diminishes as the PT lengthens. At 500 ms, outdoor
and indoor scene categorizations become nearly perfect. Our
results further show that the bias only appears at the most
superordinate level. When indoor scenes are compared with
manmade or natural outdoor scenes, the bias disappears.
Furthermore, neither segmentation nor object recognition
seems influenced by this bias between these two categories
of scenes. Hence, what is it that causes this bias? Recent
computational models have shown that, using global and
local cues such as edge and color information, it is possible
to separate most outdoor and indoor scenes (Fei-Fei &
Perona, 2005; Szummer & Picard, 1998; Torralba & Oliva,
2003; Vailaya et al., 2001). This strongly suggests that any
feature that enables this discrimination is either missing or
inaccessible when information is scarce. More studies should
be performed to pinpoint exactly what it is. This might be a
very useful entry point for someone who is investigating the
features needed for rapid scene categorization.

Another curious asymmetry we observe in Observation V
is the stronger correlation between inanimate object
recognition and overall scene context versus that between
animate object recognition and overall scene context. One

Journal of Vision (2007) 7(1):10, 1–29 Fei-Fei, Iyer, Koch, & Perona 23



possible explanation of this phenomenon is the effect of
familiarity. It has been long known that there might be
special neuronal resources designated for human parts such
as faces and bodies (Farah, 1995; Farah et al., 1998;
Kanwisher, 2001; Kanwisher, McDermott, & Chun, 1997;
Ro et al., 2001). We have also found recently that familiar-
ity might modulate the level of attentional requirement in
object recognition tasks (Fei<Fei, Fergus, & Perona, 2004).
If there is indeed an innate preference for animate objects
such as animals and humans, there might also be efficient
computational mechanisms for the visual system to process
this information rapidly and accurately. Compared to other
object categorization, it might, hence, be less dependent on
possible mutual facilitation mechanisms with scene gist
perception. Interestingly, vehicle is among the least corre-
lated object categories with scenes. Given our modern
lifestyle, subjects are, in general, very familiar with various
kinds of vehicles in the pictures in our database. Another
highly speculative hypothesis would be that there is less

mutual facilitation between the recognition of mobile
objects (such as animals, people, and vehicles) and scenes.
If prior knowledge of these objects informs us that they are
likely to move from scene to scene, there might be less
expectation for recognizing them in any particular scene.
Admittedly, much still needs to be done to fully understand
this unexpected asymmetry between inanimate and animate
objects. As this is largely speculation, more experiments
need to be done to address these hypotheses and to account
for this asymmetry.

Appendix A: Control Experiment 1
for Observation II

We wished to know whether a bias in subject per-
formance could be accounted for by simple, low-level
global cues. Indeed, many studies have explored the usage

Figure A1. Power spectral analysis. (a) A sample outdoor template, which averaged the power spectra of all outdoor images in the data
set (excluding the image itself if it is outdoor). (b) A sample indoor template, which averaged the power spectra of all indoor images in the
data set (excluding the image itself if it is indoor). (c) Distribution of the ratio score for outdoor and indoor images. The ratio score of
correlation coefficients is obtained from the outdoor correlation coefficient and indoor correlation coefficient for each image. Panel d shows
two ROC curves (training and testing) of the classification results based on the correlation ratios. A weak classification result of 68.0% is
achieved for separating indoor images from outdoor ones based on the average power spectra in the testing case.
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of global cues for categorizing natural scenes, and com-
puter vision algorithms have demonstrated relative suc-
cess in utilizing such cues to accurately achieve a variety
of classifications (Oliva & Torralba, 2001; Szummer &
Picard, 1998; Vailaya et al., 2001). Following the same
line of reasoning, we carried out two control analyses of
the global statistics of the scenes in our data set.

In the first control experiment, we assessed whether
indoor and outdoor scenes in our database could be
separated by simple frequency information (Oliva &
Torralba, 2001). Both the indoor and outdoor images
were randomly divided into halvesVa Btraining set[ and
a Btest set.[ Two power spectrum templates were then
created: (i) an outdoor template, which averaged the
power spectra of all outdoor images in the outdoor
training set, and (ii) an indoor template, which averaged
the power spectra of all indoor images in the indoor
training set. Figures A1(a) and A1(b) show two example
outdoor and indoor templates for randomly drawn training
sets. For the images in the test sets, a two-dimensional
correlation was performed between the power spectrum of
each image and the outdoor template and between the

power spectrum of each image and the indoor template.
We then obtained a ratio of correlation coefficients
(outdoor correlation coefficient:indoor correlation coeffi-
cient) for each image in the test sets. This correlation
analysis was repeated, with training and test sets reversed;
that is, the images previously in the training sets formed
the new test sets, and the images formerly used in the test
sets were used to generate the templates. Ratios of
correlation coefficients were obtained for images of the
new test sets. In this way, correlations were performed on
every image in the data set, with templates formed from
a disjoint set of images. This procedure was reiterated
10 times, with a random segregation of images into
either the training sets or the test sets each time.

Figure A1(c) shows the distribution of this ratio score
for all of the outdoor and indoor images. We use this ratio
score of the images to perform indoor versus outdoor
classification. Figure A1(d) is a receiver operating
characteristic (ROC) curve of the result. A weak classi-
fication result of 68.0% is achieved for separating indoor
images from outdoor ones based on the average power
spectra (chance classification by an ROC analysis is

Figure B1. Light top dark bottom correlation analysis. (a) Two horizontal layers constituted this template, the top consisting of
high<intensity pixels, and the bottom of low<intensity pixels. (b) A two<dimensional correlation was performed between each image in the
dataset and the template. The correlation coefficient for each image was used for classification. (c) shows the classification results in ROC
curve. Only a 47.5Q performance is achieved by using the template method.
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considered to be 50%). Compared to the average
performance of human observers at PT 500 ms (90.5%
in Figure 9), this result indicates that little information
could be used to classify indoor and outdoor scenes based
on low-level power spectral information.

It is worth noticing that our results are not entirely consonant
with recent computational models that suggest that global
frequency cues are adequate for the separation of natural scene
categories (Oliva & Torralba, 2001). We would like to point
out that the success of these models is demonstrated on a set
of relatively typical and canonical natural scenes, where
beaches are nearly all uncluttered and expansive and where
streets are nearly all photographed from a similar angle
(Oliva & Torralba, 2001). Our data set of indoor and outdoor

scenes is significantly more challenging. In particular, all
indoor and outdoor scenes are cluttered and taken from a
variety of angles. It is, thus, not surprising that the indoor and
outdoor images in this data set are less separable based on
global frequency information.

Appendix B: Control Experiment 2
for Observation II

Our second control addressed the argument that outdoor
scenes tend to have a lighter top partly due to the contrast

Attribute ! + Relevant figures

Object 80.27 T 1.25 1.53 T 0.06 Figure 14a
Inanimate object 88.29 T 1.32 1.63 T 0.06 Figures 14a and 14c
Animate object 72.01 T 2.88 1.42 T 0.14 Figures 14a, 14c, and 15a
People 78.76 T 3.86 1.48 T 0.47 Figure 14c
Animal 85.60 T 4.27 1.55 T 0.19 Figures 14c and 15a
Mammal 94.20 T 8.68 1.25 T 0.23 Figure 15a
Large mammal 106.22 T 15.21 0.95 T 0.21 Figure 15a
Natural inanimate object 99.99 T 10.21 1.44 T 0.33 Figure 15c
Rock 107.48 T 11.17 2.31 T 0.64 Figure 15c
Plant 58.08 T 11.83 1.59 T 0.91 Figure 15c
Body of water 137.94 T 20.24 1.87 T 0.47 Figure 15c
Mountain, hill 76.86 T 4.92 3.26 T 0.90 Figure 15c
Manmade inanimate object 92.57 T 2.08 1.65 T 0.09 Figure 15b
Structure 109.59 T 9.54 1.12 T 0.16 Figure 15b
Road, bridge 110.72 T 11.20 1.44 T 0.27 Figure 15b
Building 66.36 T 4.09 1.52 T 0.25 Figures 14c and 15d
Specific building 105.98 T 9.94 1.60 T 0.31 Figure 15d
Distinctive architecture 91.69 T 3.73 1.75 T 0.18 Figure 15d
Chair 91.91 T 1.81 3.58 T 0.29 Figure 14c

Scene 84.90 T 3.26 1.77 T 0.18 Figure 14a
Outdoor 73.18 T 2.51 1.54 T 0.14 Figures 14a, 14b, 16b, and 16c
Outdoor, manmade 87.20 T 3.54 1.74 T 0.18 Figures 14b and 16c
Industrial 91.82 T 3.89 3.87 T 0.71 Figure 16c
Skyline 59.28 T 3.69 1.60 T 0.28 Figure 16c
Outdoor, mm-other 99.66 T 5.68 2.75 T 0.52 Figure 16c
Outdoor, natural 77.25 T 2.47 2.34 T 0.25 Figures 14b and 16b
Urban 80.27 T 4.20 2.03 T 0.31 Figures 14b and 16c
Water 98.68 T 6.64 2.33 T 0.45 Figures 14b and 16b
Field 76.28 T 2.08 2.51 T 0.24 Figure 16b
Beach 107.34 T 0.83 5.30 T 0.27 Figure 16b
Indoor 95.38 T 3.74 2.32 T 0.27 Figures 14a, 14b, and 16a
Household room 100.56 T 1.93 3.01 T 0.20 Figure 16a
Office, class 89.24 T 3.66 3.00 T 0.45 Figure 16a
Store 133.98 T 20.56 2.79 T 1.00 Figure 16a

Table C1. Attributes and parameters from Weibull cdf fitting. Object-related attributes are listed in the upper half of the table; scene-
related attributes are listed in the lower half. ! and + are parameters, and their errors are reported. Only those attributes whose
evaluation scores are plotted for Observations III and IV are listed here. The figures where they appeared are documented in the last
column.
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of the sky, whereas there is no such cue in an indoor
image. We therefore used a simple Bsky[ template to
explore this possibility (Figure B1(a)). Three horizontal
layers constituted this template: the top, which consists
of high-intensity pixels; the middle, which consists of
median-intensity pixels; and the bottom, which consists
of low-intensity pixels. A two-dimensional correlation
was performed between each image in the data set and
the template. The correlation coefficient for each image
was used for classification. Figure B1(b) shows the
distributions of the correlation coefficients of all the
indoor and outdoor images, whereas Figure B1(c) shows
the classification results in the ROC curve. Only a 47.5%
performance is achieved by using the template method.
This is no better than chance, as compared to a high
human observer performance at PT 500 ms (90.5% in
Figure 9).

Appendix C: Weibull curve fits
for evaluation scores as a
function of PT

For Observations III and IV, evaluation scores are
presented as a function of PT (in milliseconds; see
Figures 14, 15, and 16). These scores represent the degree
to which attributes are perceived, which approximates the
probability with which they are reported. Thus, the scores
for each attribute are also fitted with a cumulative density
function, the Weibull cdf:

F tð Þ ¼ 1jej
t
!ð Þ

+

:

Here, t is PT and ! and + are the parameters determined
by the fitting procedure. In addition to the ANOVAs run
on the actual scores, the Weibull fitted curves (and the
95% confidence intervals) are examined to compare the
various attributes. Note that in Observation III, we
compare these semantic-related attributes to the original
curve sensory-level attribute. All details for attributes
and their corresponding fitted curves are shown in
Table C1.
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Footnotes

1The quality of the images of the stimuli might
influence the performance of subjects. We are, therefore,
careful to choose images that are of decent quality and
contrast although they are likely to be taken by amateurs.

2It is not hard to infer these words or phrases from
Figures 1 and 2. A recent rerun of 10 naive subjects
suggests a list of the following 31 words or phrases that
are very similar to the ones obtained before: park, pool,
desert, animals, ocean, yard, beach, suburb or residential
area, urban environ or skyline, parking lot, city or streets,
mountain, forest, airplane or airport, river, various sport
games, office, library, cafe or restaurant, store, lab,
bathroom, kitchen, living room, bedroom, store or mall,
concert or stage, hospital, museum, party, and gym.
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