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1. Proofs
Remark 1.1. We first provide proofs and constructions for probability vectors for non-overlapping categories (Lemma 1.4–
1.12), i.e. x ∈ RK ,

∑
i xi = 1, 0 ≤ xi ≤ 1 for i = 1, . . . ,K. We use ∆K−1 to denote the set of all such vectors. In

Lemma 1.15, we show extension to the general case where x ∈ RK , 0 ≤ xi ≤ 1 for i = 1, . . . ,K (but does not necessarily
sum to one). We use ∆̃K−1 to denote the set of all such vectors.

Definition 1.2. A matrix S ∈ RK×K is hashable, if there exists a λS > 0 and, for any ε > 0, a distribution on a family
H(S, ε) of hash functions h(·;S, ε) such that for any x, y ∈ ∆K−1,

0 ≤ Pr (h1(x;S, ε) = h2(y;S, ε)) − λS · xTSy ≤ ε

where h1 and h2 are drawn independently fromH(S, ε).

Remark 1.3. Here we relax the equality in the LSH condition Pr(h1(x) = h2(y)) = Sim(x, y) to equality up to ε. This has
virtually no practical impact because in all of our constructions ε can be easily made negligibly small, without incurring any
additional computational cost. Also note that scaling S does not affect the ranking induced by the similarity xTSy.

Lemma 1.4. If S is symmetric, element-wise non-negative and diagonally dominant, that is,
∀i = 1, . . . ,K, sii ≥

∑
j 6=i sij , then S is hashable.

Proof. Define a K × (K + 1) matrix Θ = (θij), where

θij =
√
ŝij , ∀i = 1, . . . ,K, ∀j = 1, . . . ,K, i 6= j.

θii =
√
ŝii −

∑
j 6=i

ŝij , ∀i = 1, . . . ,K.

θi,K+1 = 1−
K∑
j=1

θij , ∀i = 1, . . . ,K.

where Ŝ = λS · S with λS chosen to ensure θi,K+1 ≥ 0. Note that each row of Θ sums to one. Also note that θij =
θji,∀i, j ≤ K due to the symmetry of S.

Consider hash functions h(x) that map a probability vector to a set of positive integers, that is, h : ∆K−1 → 2N where 2N

is all subsets of natural numbers. Note that h(x) = h(y) is defined as set equality, that is, the ordering of elements does not
matter.

To constructH(S, ε), let N ≥ 1/ε. Then h(x;S, ε) is computed as follows:

1. Sample α ∈ {1, . . . ,K} ∼ multi(x)

2. Sample β ∈ {1, . . . ,K + 1} ∼ multi(θα) where θα is the αth row of Θ.

3. If β ≤ K, return {α, β}



4. Randomly pick γ from {K + 1, . . . ,K +N}, return {γ}.

In implementation, h is parametrized by three uniformly drawn values p, q ∈ [0, 1] and r ∈ {1 . . . N}, used respectively
in the sampling process for α, β and γ.

Let x, y be probability vectors, x, y ∈ ∆K−1. Let αx, βx, γx be the values sampled when computing h(x), and similarly
for αy, βy, γy . To compute Pr(h(x) = h(y)), consider two cases below.

Case 1: Suppose αx = i ∈ {1, . . . ,K}, αy = j ∈ {1, . . . ,K}, i 6= j. Then

Pr(h(x) = h(y) | αx = i ∧ αy = j) = Pr(βx = j ∧ βy = i | αx = i ∧ αy = j) +
Pr(γx = γy ∧ βx = K + 1 ∧ βy = K + 1 | αx = i ∧ αy = j)

= Pr(βx = j | αx = i)× Pr(βy = i | αy = j) +
Pr(γx = γy | βx = K + 1, βy = K + 1)×
Pr(βx = K + 1 | αx = i)× Pr(βy = K + 1 | αy = j)

= θijθji +
1
N

θi,K+1θj,K+1

= ŝij +
1
N

θi,K+1θj,K+1

Case 2: Suppose αx = αy = i ∈ {1, . . . ,K}. Then

Pr(h(x) = h(y) | αx = αy = i) = Pr(βx = βy ≤ K | αx = αy = i) +
Pr(γx = γy ∧ βx = K + 1 ∧ βy = K + 1 | αx = αy = i)

=
K∑
j=1

Pr(βx = βy = j | αx = αy = i) +

Pr(γx = γy | βx = K + 1, βy = K + 1)×
Pr(βx = K + 1 | αx = i)× Pr(βy = K + 1 | αy = j)

=
K∑
j=1

θ2
ij +

1
N

θ2
i,K+1

= ŝii +
1
N

θ2
i,K+1

Summing up the above conditional probabilities, we get

Pr(h(x) = h(y)) =
∑
i 6=j

xiyj Pr(h(x) = h(y)|αx = i ∧ αy = j) +

∑
i

xiyi Pr(h(x) = h(y)|αx = αy = i)

=
∑
i,j

xiŝijyj +
1
N

∑
i 6=j

xiyjθi,K+1θj,K+1 +
1
N

∑
i

xiyiθ
2
i,K+1

= λSx
TSy +

1
N

∑
i,j

xiyjθi,K+1θj,K+1

To conclude the proof, observe that

0 ≤ 1
N

∑
i,j

xiyjθi,K+1θj,K+1 ≤
1
N

(∑
i

xiθi,K+1

)∑
j

xjθj,K+1

 ≤ ε



Remark 1.5. For the special case where S is the identity matrix, h(x;S) reduces to h(x; I), which returns an α ∈ {1, . . . ,K}
sampled from multi(x).

Lemma 1.6. If S is a matrix of all ones, then S is hashable.

Proof. Note that xTSy = 1 in this case since x, y ∈ ∆K−1. Simply letH consist of one constant function.

Definition 1.7. A matrix Q ∈ Rm×m is a zero padded extension of S ∈ Rn×n if there exists an one-to-one function f that
maps the indices τ = {1 . . . n} to {1 . . .m} such that Qi,j = Sf−1(i),f−1(j) for any i, j ∈ f(τ) and Qi,j = 0 otherwise.

Remark 1.8. In other words, Q is obtained by symmetrically inserting rows and columns of zeros into S.

Lemma 1.9. If Q is a zero padded extension of S and S is hashable, then Q is hashable.

Proof. Let ε > 0, and let x, y ∈ ∆K−1. Define xf(τ) ∈ Rn such that its ith element is xf−1(i). We the define g(x;Q, ε) as
follows:

1. Sample α ∈ {1, . . . ,m} ∼ multi(x)

2. If α ∈ f(τ), return
(

0, h( xf(τ)
||xf(τ)||1

;S, ε2 )
)

, where h ∈ H(S, ε2 ) as in Definition 1.2
Else return β ∈ {1, . . . , N} uniformly drawn, where N = d2/εe.

We now show Q is hashable.

Pr (g(x;Q, ε) = g(y;Q, ε)) = Pr
(
αx ∈ f(τ) ∧ αy ∈ f(τ) ∧ h

(
xf(τ)

||xf(τ)||1
;S,

ε

2

)
= h

(
yf(τ)

||yf(τ)||1
;S,

ε

2

))
+ Pr (βx = βy)

= ||xf(τ)||1 · ||yf(τ)||1 ·

(
λS

xTf(τ)

||xf(τ)||1
S

yf(τ)

||yf(τ)||1
+ δ

)

+
1
N

(1− ||xf(τ)||1)(1− ||yf(τ)||1)

= λS · xTQy + ||xf(τ)||1 · ||yf(τ)||1 · δ +
1
N

(1− ||xf(τ)||1)(1− ||yf(τ)||1)

where 0 ≤ δ ≤ ε/2 by the choice of h. Note that

||xf(τ)||1 · ||yf(τ)||1 · δ +
1
N

(1− ||xf(τ)||1)(1− ||yf(τ)||1) ≤ ε/2 + ε/2 = ε

Lemma 1.10. If S is hashable, then aS is hashable for any a > 0.

Proof. This follows directly from Definition 1.2 (by using λaS = 1
aλS).

Lemma 1.11. If Q =
∑L
l=1 Sl and Sl is hashable for l = 1, . . . , L, then Q is hashable.

Proof. Suppose the hash function for Sl is hl and the scalar is λSl , for l = 1, . . . , L.
Let z =

∑L
l=1

1√
λSl

and θ ∈ RL where θl = 1
z ·

1√
λSl

.

We construct hash function g(x;Q, ε) as follows:

1. Sample α ∈ {1, . . . , L} ∼ multi(θ).

2. return (α, hα(x;Sl, ε/L)).



Then

Pr (g(x;Q, ε) = g(y;Q, ε)) =
L∑
l=1

Pr (αx = αy = l ∧ hl(x;Sl, ε/L) = hl(y;Sl, ε/L))

=
L∑
l=1

θ2
l (λSlx

TSly + δl)

=
1
z2
xTQy +

L∑
l=1

θ2
l δl

where 0 ≤ δl ≤ ε/L. Note that 0 ≤
∑L
l θ

2
l δl ≤ ε and thus Q is hashable.

Lemma 1.12. Let T = G(V,E) be a rooted tree and define πm,n to be the lowest common ancestor between node m and n
for anym,n ∈ V . Let Vr ⊆ V be subtree rooted at r (i.e., the set of all nodes descending from node r ∈ V including r itself).
Let Ωr ⊆ Vr be all the leaf nodes of r and let Kr = |Ωr|. Let fr : Ωr → {1, . . . ,Kr} be a one-to-one correspondence of
the leaf nodes of r to a set of integers. Let ξ(·) : V → R be any function defined on V . Let S(r,ξ) ∈ RKr×Kr be a similarity
matrix induced by r and ξ, where S(r,ξ)

ij = ξ(πf−1
r (i),f−1

r (j)),∀i = 1, . . . ,Kr, j = 1, . . . ,Kr.
For any r ∈ V , if ξ(·) is non-negative and downward non-decreasing in the subtree of r, that is, ξ(q) ≥ 0 for any q ∈ Vr

and ξ(q) ≥ ξ(p) for any p, q ∈ Vr such that q is a child of p, then S(r,ξ) is hashable.

Proof. Let r ∈ V . Suppose ξ(·) is non-negative and downward non-decreasing in the subtree of r. We prove the claim by
induction on the tree.

If r is a leaf node, then S(r,ξ) is a scalar and thus hashable.
Now we consider the case when r is an internal node. Let σ(r) be the set of direct children of r. Our inductive hypothesis

is that given any c ∈ σ(r), the similarity matrix S(c,ξ′) induced by c and any ξ′ : Vc → R, which is non-negative and
downward non-decreasing, is hashable.

For a given c ∈ σ(r), let fr(Ωc) be the set of indices of the leaf nodes of c in S(r,ξ). The tree structure implies⋃
c∈σ(r)

fr(Ωc) = {1, . . . ,Kr} (1)

and
fr(Ωc)

⋂
fr(Ωd) = ∅, for any c, d ∈ σ(r) and c 6= d . (2)

That is, the columns and rows of S(r,ξ) can be partitioned by the direct children of r.
Also, if c and d are different direct children of r, then the lowest common ancestor between the descendant nodes of c and

those of d must be r. Thus

S
(r,ξ)
fr(Ωc),fr(Ωd) = ξ(πΩc,Ωd) = ξ(r) · 1, for any c, d ∈ σ(r) and c 6= d . (3)

where 1 is a matrix of all ones.
For a given c ∈ σ(r), define Q(c) ∈ RKr×Kr such that

Q
(c)
ij =

{
S

(r,ξ)
ij − ξ(r) if i, j ∈ fr(Ωc)

0 otherwise.

It follows from (1), (2) and (3) that
S(r,ξ) = ξ(r) · 1 +

∑
c∈σ(r)

Q(c) (4)

Define ξ′(·) = ξ(·) − ξ(r). Since the lowest common ancestor of the leaf nodes of r cannot be higher than r and ξ is
downward non-decreasing, we conclude that ξ′(d) ≥ 0 for any d ∈ Vr and ξ′(d) is downward non-decreasing.

By the inductive hypothesis, given any c ∈ σ(r), the similarity matrix S(c,ξ′) induced by c and ξ′ is hashable.



Now we show that Q(c) is a zero padded extension of S(c,ξ′).
Let Kc = |Ωc| and fc be the function that maps the nodes in Ωc to indices of S(c,ξ′). Recall that fr maps nodes in Ωr

(including Ωc) to indices in S(r,ξ).
Let f : {1, . . . ,Kc} → {1, . . . ,Kr}, where f = fr · f−1

c . Let τ = {1, . . . ,Kc}. It follows that f(τ) = fr(Ωc).
For any i, j ∈ f(τ), that is, ∀i, j ∈ fr(Ωc),

Q
(c)
ij = S

(r,ξ)
ij − ξ(r)

= ξ(πf−1
r (i),f−1

r (j))− ξ(r)(By definition of fr)

= ξ′(πf−1
r (i),f−1

r (j))(By definition of ξ′)

= S
(c,ξ′)

fc·f−1
r (i),fc·f−1

r (j)
(By definition of fc)

= S
(c,ξ′)
f−1(i),f−1(j)

By Definition 1.7, Q(c) is a zero padded extension of S(c,ξ′) and is therefore hashable by Lemma 1.9. It follows from
Lemma 1.6, Lemma 1.10, Lemma 1.11 and from (4) that S(r,ξ) is hashable.

Remark 1.13. Note that a similarity matrix derived from a hierarchy, as in Lemma 1.12, is not necessarily diagonally dom-
inant. For example, if a leaf node has many siblings, the sum of its similarities with its siblings can easily be more than its
self similarity.

Definition 1.14. A matrix S ∈ RK×K is generally hashable, if there exists a λS > 0 and, for any ε > 0, a distribution on a
familyH(S, ε) of hash functions h(·;S, ε) such that for any x, y ∈ ∆̃K−1,

0 ≤ Pr (h1(x;S, ε) = h2(y;S, ε)) − λS · xTSy ≤ ε

where h1 and h2 are drawn independently fromH(S, ε).

Lemma 1.15. Hashing for the general case. Any hashable matrix S ∈ RK×K is generally hashable.

Proof. For any x, y ∈ ∆̃K−1, let x̂ = (x/K, 1−
∑
i xi/K) ∈ RK+1 and ŷ = (y/K, 1−

∑
i yi/K) ∈ RK+1. Observe that

x̂ and ŷ ∈ ∆K . Let

Ŝ ∈ R(K+1)×(K+1), Ŝ =
(
S 0
0 0

)
Ŝ is a zero padded extension of S and is therefore hashable by Lemma 1.9. That is, there exists a λŜ and for any ε > 0, a
distribution on a family of functions Ĥ such that

0 ≤ Pr ĥ1,ĥ2∈Ĥ(ĥ1(x̂) = ĥ2(ŷ))− x̂T Ŝŷ ≤ ε.

Observe that x̂T Ŝŷ = xTSy. Therefore

0 ≤ Pr ĥ1,ĥ2∈Ĥ(ĥ1(x̂) = ĥ2(ŷ))− xTSy ≤ ε.

Let h(z) = ĥ(ẑ), for any z ∈ ∆̃K−1. Observe that Pr(h1(x) = h2(y)) = Pr(ĥ1(x̂) = ĥ2(ŷ)). Therefore,

0 ≤ Pr(h1(x) = h2(y))− xTSy ≤ ε.

By Definition 1.14, S is generally hashable.


