Supplementary Material: Hierarchical Semantic Indexing for Large Scale Image Retrieval

Jia Deng ${ }^{1,3}$
Princeton University ${ }^{1}$

Alexander C. Berg ${ }^{2}$
Stony Brook University ${ }^{2}$

Li Fei-Fei ${ }^{3}$
Stanford University ${ }^{3}$

1. Proofs

Remark 1.1. We first provide proofs and constructions for probability vectors for non-overlapping categories (Lemma 1.41.12), i.e. $x \in \mathbb{R}^{K}, \sum_{i} x_{i}=1,0 \leq x_{i} \leq 1$ for $i=1, \ldots, K$. We use Δ^{K-1} to denote the set of all such vectors. In Lemma 1.15, we show extension to the general case where $x \in \mathbb{R}^{K}, 0 \leq x_{i} \leq 1$ for $i=1, \ldots, K$ (but does not necessarily sum to one). We use $\tilde{\Delta}^{K-1}$ to denote the set of all such vectors.

Definition 1.2. A matrix $S \in \mathbb{R}^{K \times K}$ is hashable, if there exists a $\lambda_{S}>0$ and, for any $\epsilon>0$, a distribution on a family $\mathcal{H}(S, \epsilon)$ of hash functions $h(\cdot ; S, \epsilon)$ such that for any $x, y \in \Delta^{K-1}$,

$$
0 \leq \operatorname{Pr}\left(h_{1}(x ; S, \epsilon)=h_{2}(y ; S, \epsilon)\right)-\lambda_{S} \cdot x^{T} S y \leq \epsilon
$$

where h_{1} and h_{2} are drawn independently from $\mathcal{H}(S, \epsilon)$.
Remark 1.3. Here we relax the equality in the LSH condition $\operatorname{Pr}\left(h_{1}(x)=h_{2}(y)\right)=\operatorname{Sim}(x, y)$ to equality up to ϵ. This has virtually no practical impact because in all of our constructions ϵ can be easily made negligibly small, without incurring any additional computational cost. Also note that scaling S does not affect the ranking induced by the similarity $x^{T} S y$.

Lemma 1.4. If S is symmetric, element-wise non-negative and diagonally dominant, that is, $\forall i=1, \ldots, K, s_{i i} \geq \sum_{j \neq i} s_{i j}$, then S is hashable.

Proof. Define a $K \times(K+1)$ matrix $\Theta=\left(\theta_{i j}\right)$, where

$$
\begin{aligned}
\theta_{i j} & =\sqrt{\hat{s}_{i j}}, \forall i=1, \ldots, K, \forall j=1, \ldots, K, i \neq j . \\
\theta_{i i} & =\sqrt{\hat{s}_{i i}-\sum_{j \neq i} \hat{s}_{i j}}, \forall i=1, \ldots, K . \\
\theta_{i, K+1} & =1-\sum_{j=1}^{K} \theta_{i j}, \forall i=1, \ldots, K .
\end{aligned}
$$

where $\hat{S}=\lambda_{S} \cdot S$ with λ_{S} chosen to ensure $\theta_{i, K+1} \geq 0$. Note that each row of Θ sums to one. Also note that $\theta_{i j}=$ $\theta_{j i}, \forall i, j \leq K$ due to the symmetry of S.

Consider hash functions $h(x)$ that map a probability vector to a set of positive integers, that is, $h: \Delta^{K-1} \rightarrow 2^{\mathbb{N}}$ where $2^{\mathbb{N}}$ is all subsets of natural numbers. Note that $h(x)=h(y)$ is defined as set equality, that is, the ordering of elements does not matter.

To construct $\mathcal{H}(S, \epsilon)$, let $N \geq 1 / \epsilon$. Then $h(x ; S, \epsilon)$ is computed as follows:

1. Sample $\alpha \in\{1, \ldots, K\} \sim \operatorname{multi}(x)$
2. Sample $\beta \in\{1, \ldots, K+1\} \sim \operatorname{multi}\left(\theta_{\alpha}\right)$ where θ_{α} is the $\alpha^{\text {th }}$ row of Θ.
3. If $\beta \leq K$, return $\{\alpha, \beta\}$
4. Randomly pick γ from $\{K+1, \ldots, K+N\}$, return $\{\gamma\}$.

In implementation, h is parametrized by three uniformly drawn values $p, q \in[0,1]$ and $r \in\{1 \ldots N\}$, used respectively in the sampling process for α, β and γ.

Let x, y be probability vectors, $x, y \in \Delta^{K-1}$. Let $\alpha_{x}, \beta_{x}, \gamma_{x}$ be the values sampled when computing $h(x)$, and similarly for $\alpha_{y}, \beta_{y}, \gamma_{y}$. To compute $\operatorname{Pr}(h(x)=h(y))$, consider two cases below.

Case 1: Suppose $\alpha_{x}=i \in\{1, \ldots, K\}, \alpha_{y}=j \in\{1, \ldots, K\}, i \neq j$. Then

$$
\begin{aligned}
\operatorname{Pr}\left(h(x)=h(y) \mid \alpha_{x}=i \wedge \alpha_{y}=j\right)= & \operatorname{Pr}\left(\beta_{x}=j \wedge \beta_{y}=i \mid \alpha_{x}=i \wedge \alpha_{y}=j\right)+ \\
& \operatorname{Pr}\left(\gamma_{x}=\gamma_{y} \wedge \beta_{x}=K+1 \wedge \beta_{y}=K+1 \mid \alpha_{x}=i \wedge \alpha_{y}=j\right) \\
= & \operatorname{Pr}\left(\beta_{x}=j \mid \alpha_{x}=i\right) \times \operatorname{Pr}\left(\beta_{y}=i \mid \alpha_{y}=j\right)+ \\
& \operatorname{Pr}\left(\gamma_{x}=\gamma_{y} \mid \beta_{x}=K+1, \beta_{y}=K+1\right) \times \\
& \operatorname{Pr}\left(\beta_{x}=K+1 \mid \alpha_{x}=i\right) \times \operatorname{Pr}\left(\beta_{y}=K+1 \mid \alpha_{y}=j\right) \\
= & \theta_{i j} \theta_{j i}+\frac{1}{N} \theta_{i, K+1} \theta_{j, K+1} \\
= & \hat{s}_{i j}+\frac{1}{N} \theta_{i, K+1} \theta_{j, K+1}
\end{aligned}
$$

Case 2: Suppose $\alpha_{x}=\alpha_{y}=i \in\{1, \ldots, K\}$. Then

$$
\begin{aligned}
\operatorname{Pr}\left(h(x)=h(y) \mid \alpha_{x}=\alpha_{y}=i\right)= & \operatorname{Pr}\left(\beta_{x}=\beta_{y} \leq K \mid \alpha_{x}=\alpha_{y}=i\right)+ \\
& \operatorname{Pr}\left(\gamma_{x}=\gamma_{y} \wedge \beta_{x}=K+1 \wedge \beta_{y}=K+1 \mid \alpha_{x}=\alpha_{y}=i\right) \\
= & \sum_{j=1}^{K} \operatorname{Pr}\left(\beta_{x}=\beta_{y}=j \mid \alpha_{x}=\alpha_{y}=i\right)+ \\
& \operatorname{Pr}\left(\gamma_{x}=\gamma_{y} \mid \beta_{x}=K+1, \beta_{y}=K+1\right) \times \\
& \operatorname{Pr}\left(\beta_{x}=K+1 \mid \alpha_{x}=i\right) \times \operatorname{Pr}\left(\beta_{y}=K+1 \mid \alpha_{y}=j\right) \\
= & \sum_{j=1}^{K} \theta_{i j}^{2}+\frac{1}{N} \theta_{i, K+1}^{2} \\
= & \hat{s}_{i i}+\frac{1}{N} \theta_{i, K+1}^{2}
\end{aligned}
$$

Summing up the above conditional probabilities, we get

$$
\begin{aligned}
\operatorname{Pr}(h(x)=h(y))= & \sum_{i \neq j} x_{i} y_{j} \operatorname{Pr}\left(h(x)=h(y) \mid \alpha_{x}=i \wedge \alpha_{y}=j\right)+ \\
& \sum_{i} x_{i} y_{i} \operatorname{Pr}\left(h(x)=h(y) \mid \alpha_{x}=\alpha_{y}=i\right) \\
= & \sum_{i, j} x_{i} \hat{s}_{i j} y_{j}+\frac{1}{N} \sum_{i \neq j} x_{i} y_{j} \theta_{i, K+1} \theta_{j, K+1}+\frac{1}{N} \sum_{i} x_{i} y_{i} \theta_{i, K+1}^{2} \\
= & \lambda_{S} x^{T} S y+\frac{1}{N} \sum_{i, j} x_{i} y_{j} \theta_{i, K+1} \theta_{j, K+1}
\end{aligned}
$$

To conclude the proof, observe that

$$
0 \leq \frac{1}{N} \sum_{i, j} x_{i} y_{j} \theta_{i, K+1} \theta_{j, K+1} \leq \frac{1}{N}\left(\sum_{i} x_{i} \theta_{i, K+1}\right)\left(\sum_{j} x_{j} \theta_{j, K+1}\right) \leq \epsilon
$$

Remark 1.5. For the special case where S is the identity matrix, $h(x ; S)$ reduces to $h(x ; I)$, which returns an $\alpha \in\{1, \ldots, K\}$ sampled from multi (x).

Lemma 1.6. If S is a matrix of all ones, then S is hashable.
Proof. Note that $x^{T} S y=1$ in this case since $x, y \in \Delta^{K-1}$. Simply let \mathcal{H} consist of one constant function.
Definition 1.7. A matrix $Q \in \mathbb{R}^{m \times m}$ is a zero padded extension of $S \in \mathbb{R}^{n \times n}$ if there exists an one-to-one function f that maps the indices $\tau=\{1 \ldots n\}$ to $\{1 \ldots m\}$ such that $Q_{i, j}=S_{f^{-1}(i), f^{-1}(j)}$ for any $i, j \in f(\tau)$ and $Q_{i, j}=0$ otherwise.
Remark 1.8. In other words, Q is obtained by symmetrically inserting rows and columns of zeros into S.
Lemma 1.9. If Q is a zero padded extension of S and S is hashable, then Q is hashable.
Proof. Let $\epsilon>0$, and let $x, y \in \Delta^{K-1}$. Define $x_{f(\tau)} \in \mathbb{R}^{n}$ such that its $i^{\text {th }}$ element is $x_{f^{-1}(i)}$. We the define $g(x ; Q, \epsilon)$ as follows:

1. Sample $\alpha \in\{1, \ldots, m\} \sim \operatorname{multi}(x)$
2. If $\alpha \in f(\tau)$, return $\left(0, h\left(\frac{x_{f(\tau)}}{\left\|x_{f(\tau)}\right\|_{1}} ; S, \frac{\epsilon}{2}\right)\right)$, where $h \in \mathcal{H}\left(S, \frac{\epsilon}{2}\right)$ as in Definition 1.2

Else return $\beta \in\{1, \ldots, N\}$ uniformly drawn, where $N=\lceil 2 / \epsilon\rceil$.
We now show Q is hashable.

$$
\begin{aligned}
\operatorname{Pr}(g(x ; Q, \epsilon)=g(y ; Q, \epsilon))= & \operatorname{Pr}\left(\alpha_{x} \in f(\tau) \wedge \alpha_{y} \in f(\tau) \wedge h\left(\frac{x_{f(\tau)}}{\left\|x_{f(\tau)}\right\|_{1}} ; S, \frac{\epsilon}{2}\right)=h\left(\frac{y_{f(\tau)}}{\left\|y_{f(\tau)}\right\|_{1}} ; S, \frac{\epsilon}{2}\right)\right) \\
& +\operatorname{Pr}\left(\beta_{x}=\beta_{y}\right) \\
= & \left\|x_{f(\tau)}\right\|_{1} \cdot\left\|y_{f(\tau)}\right\|_{1} \cdot\left(\lambda_{S} \frac{x_{f(\tau)}^{T}}{\left\|x_{f(\tau)}\right\|_{1}} S \frac{y_{f(\tau)}}{\left\|y_{f(\tau)}\right\|_{1}}+\delta\right) \\
& +\frac{1}{N}\left(1-\left\|x_{f(\tau)}\right\|_{1}\right)\left(1-\left\|y_{f(\tau)}\right\|_{1}\right) \\
= & \lambda_{S} \cdot x^{T} Q y+\left\|x_{f(\tau)}\right\|_{1} \cdot\left\|y_{f(\tau)}\right\|_{1} \cdot \delta+\frac{1}{N}\left(1-\left\|x_{f(\tau)}\right\|_{1}\right)\left(1-\left\|y_{f(\tau)}\right\|_{1}\right)
\end{aligned}
$$

where $0 \leq \delta \leq \epsilon / 2$ by the choice of h. Note that

$$
\left\|x_{f(\tau)}\right\|_{1} \cdot\left\|y_{f(\tau)}\right\|_{1} \cdot \delta+\frac{1}{N}\left(1-\left\|x_{f(\tau)}\right\|_{1}\right)\left(1-\left\|y_{f(\tau)}\right\|_{1}\right) \leq \epsilon / 2+\epsilon / 2=\epsilon
$$

Lemma 1.10. If S is hashable, then $a S$ is hashable for any $a>0$.
Proof. This follows directly from Definition 1.2 (by using $\lambda_{a S}=\frac{1}{a} \lambda_{S}$).

Lemma 1.11. If $Q=\sum_{l=1}^{L} S_{l}$ and S_{l} is hashable for $l=1, \ldots, L$, then Q is hashable.
Proof. Suppose the hash function for S_{l} is h_{l} and the scalar is $\lambda_{S_{l}}$, for $l=1, \ldots, L$. Let $z=\sum_{l=1}^{L} \frac{1}{\sqrt{\lambda_{S_{l}}}}$ and $\theta \in \mathbb{R}^{L}$ where $\theta_{l}=\frac{1}{z} \cdot \frac{1}{\sqrt{\lambda_{S_{l}}}}$.
We construct hash function $g(x ; Q, \epsilon)$ as follows:

1. Sample $\alpha \in\{1, \ldots, L\} \sim \operatorname{multi}(\theta)$.
2. return $\left(\alpha, h_{\alpha}\left(x ; S_{l}, \epsilon / L\right)\right)$.

Then

$$
\begin{aligned}
\operatorname{Pr}(g(x ; Q, \epsilon)=g(y ; Q, \epsilon)) & =\sum_{l=1}^{L} \operatorname{Pr}\left(\alpha_{x}=\alpha_{y}=l \wedge h_{l}\left(x ; S_{l}, \epsilon / L\right)=h_{l}\left(y ; S_{l}, \epsilon / L\right)\right) \\
& =\sum_{l=1}^{L} \theta_{l}^{2}\left(\lambda_{S_{l}} x^{T} S_{l} y+\delta_{l}\right) \\
& =\frac{1}{z^{2}} x^{T} Q y+\sum_{l=1}^{L} \theta_{l}^{2} \delta_{l}
\end{aligned}
$$

where $0 \leq \delta_{l} \leq \epsilon / L$. Note that $0 \leq \sum_{l}^{L} \theta_{l}^{2} \delta_{l} \leq \epsilon$ and thus Q is hashable.

Lemma 1.12. Let $T=G(V, E)$ be a rooted tree and define $\pi_{m, n}$ to be the lowest common ancestor between node m and n for any $m, n \in V$. Let $V_{r} \subseteq V$ be subtree rooted at r (i.e., the set of all nodes descending from node $r \in V$ including r itself). Let $\Omega_{r} \subseteq V_{r}$ be all the leaf nodes of r and let $K_{r}=\left|\Omega_{r}\right|$. Let $f_{r}: \Omega_{r} \rightarrow\left\{1, \ldots, K_{r}\right\}$ be a one-to-one correspondence of the leaf nodes of r to a set of integers. Let $\xi(\cdot): V \rightarrow \mathbb{R}$ be any function defined on V. Let $S^{(r, \xi)} \in \mathbb{R}^{K_{r} \times K_{r}}$ be a similarity matrix induced by r and ξ, where $S_{i j}^{(r, \xi)}=\xi\left(\pi_{f_{r}^{-1}(i), f_{r}^{-1}(j)}\right), \forall i=1, \ldots, K_{r}, j=1, \ldots, K_{r}$.

For any $r \in V$, if $\xi(\cdot)$ is non-negative and downward non-decreasing in the subtree of r, that is, $\xi(q) \geq 0$ for any $q \in V_{r}$ and $\xi(q) \geq \xi(p)$ for any $p, q \in V_{r}$ such that q is a child of p, then $S^{(r, \xi)}$ is hashable.

Proof. Let $r \in V$. Suppose $\xi(\cdot)$ is non-negative and downward non-decreasing in the subtree of r. We prove the claim by induction on the tree.

If r is a leaf node, then $S^{(r, \xi)}$ is a scalar and thus hashable.
Now we consider the case when r is an internal node. Let $\sigma(r)$ be the set of direct children of r. Our inductive hypothesis is that given any $c \in \sigma(r)$, the similarity matrix $S^{\left(c, \xi^{\prime}\right)}$ induced by c and any $\xi^{\prime}: V_{c} \rightarrow \mathbb{R}$, which is non-negative and downward non-decreasing, is hashable.

For a given $c \in \sigma(r)$, let $f_{r}\left(\Omega_{c}\right)$ be the set of indices of the leaf nodes of c in $S^{(r, \xi)}$. The tree structure implies

$$
\begin{equation*}
\bigcup_{c \in \sigma(r)} f_{r}\left(\Omega_{c}\right)=\left\{1, \ldots, K_{r}\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{r}\left(\Omega_{c}\right) \bigcap f_{r}\left(\Omega_{d}\right)=\emptyset, \text { for any } c, d \in \sigma(r) \text { and } c \neq d \tag{2}
\end{equation*}
$$

That is, the columns and rows of $S^{(r, \xi)}$ can be partitioned by the direct children of r.
Also, if c and d are different direct children of r, then the lowest common ancestor between the descendant nodes of c and those of d must be r. Thus

$$
\begin{equation*}
S_{f_{r}\left(\Omega_{c}\right), f_{r}\left(\Omega_{d}\right)}^{(r,,)}=\xi\left(\pi_{\Omega_{c}, \Omega_{d}}\right)=\xi(r) \cdot \mathbf{1}, \text { for any } c, d \in \sigma(r) \text { and } c \neq d \tag{3}
\end{equation*}
$$

where 1 is a matrix of all ones.
For a given $c \in \sigma(r)$, define $Q^{(c)} \in \mathbb{R}^{K_{r} \times K_{r}}$ such that

$$
Q_{i j}^{(c)}= \begin{cases}S_{i j}^{(r, \xi)}-\xi(r) & \text { if } i, j \in f_{r}\left(\Omega_{c}\right) \\ 0 & \text { otherwise }\end{cases}
$$

It follows from (1), (2) and (3) that

$$
\begin{equation*}
S^{(r, \xi)}=\xi(r) \cdot \mathbf{1}+\sum_{c \in \sigma(r)} Q^{(c)} \tag{4}
\end{equation*}
$$

Define $\xi^{\prime}(\cdot)=\xi(\cdot)-\xi(r)$. Since the lowest common ancestor of the leaf nodes of r cannot be higher than r and ξ is downward non-decreasing, we conclude that $\xi^{\prime}(d) \geq 0$ for any $d \in V_{r}$ and $\xi^{\prime}(d)$ is downward non-decreasing.

By the inductive hypothesis, given any $c \in \sigma(r)$, the similarity matrix $S^{\left(c, \xi^{\prime}\right)}$ induced by c and ξ^{\prime} is hashable.

Now we show that $Q^{(c)}$ is a zero padded extension of $S^{\left(c, \xi^{\prime}\right)}$.
Let $K_{c}=\left|\Omega_{c}\right|$ and f_{c} be the function that maps the nodes in Ω_{c} to indices of $S^{\left(c, \xi^{\prime}\right)}$. Recall that f_{r} maps nodes in Ω_{r} (including Ω_{c}) to indices in $S^{(r, \xi)}$.

Let $f:\left\{1, \ldots, K_{c}\right\} \rightarrow\left\{1, \ldots, K_{r}\right\}$, where $f=f_{r} \cdot f_{c}^{-1}$. Let $\tau=\left\{1, \ldots, K_{c}\right\}$. It follows that $f(\tau)=f_{r}\left(\Omega_{c}\right)$. For any $i, j \in f(\tau)$, that is, $\forall i, j \in f_{r}\left(\Omega_{c}\right)$,

$$
\begin{aligned}
Q_{i j}^{(c)} & =S_{i j}^{(r, \xi)}-\xi(r) \\
& =\xi\left(\pi_{f_{r}^{-1}(i), f_{r}^{-1}(j)}\right)-\xi(r)\left(\text { By definition of } f_{r}\right) \\
& =\xi^{\prime}\left(\pi_{f_{r}^{-1}(i), f_{r}^{-1}(j)}^{-1}\right)\left(\text { By definition of } \xi^{\prime}\right) \\
& =S_{f_{c} \cdot f_{r}^{-1}(i), f_{c} \cdot f_{r}^{-1}(j)}^{\left(c, \xi^{\prime}\right)}\left(\text { By definition of } f_{c}\right) \\
& =S_{f-1(i), f^{-1}(j)}^{\left(c, \xi^{\prime}\right)}
\end{aligned}
$$

By Definition 1.7, $Q^{(c)}$ is a zero padded extension of $S^{\left(c, \xi^{\prime}\right)}$ and is therefore hashable by Lemma 1.9. It follows from Lemma 1.6, Lemma 1.10, Lemma 1.11 and from (4) that $S^{(r, \xi)}$ is hashable.

Remark 1.13. Note that a similarity matrix derived from a hierarchy, as in Lemma 1.12, is not necessarily diagonally dominant. For example, if a leaf node has many siblings, the sum of its similarities with its siblings can easily be more than its self similarity.

Definition 1.14. A matrix $S \in \mathbb{R}^{K \times K}$ is generally hashable, if there exists a $\lambda_{S}>0$ and, for any $\epsilon>0$, a distribution on a family $\mathcal{H}(S, \epsilon)$ of hash functions $h(\cdot ; S, \epsilon)$ such that for any $x, y \in \tilde{\Delta}^{K-1}$,

$$
0 \leq \operatorname{Pr}\left(h_{1}(x ; S, \epsilon)=h_{2}(y ; S, \epsilon)\right)-\lambda_{S} \cdot x^{T} S y \leq \epsilon
$$

where h_{1} and h_{2} are drawn independently from $\mathcal{H}(S, \epsilon)$.
Lemma 1.15. Hashing for the general case. Any hashable matrix $S \in \mathbb{R}^{K \times K}$ is generally hashable.
Proof. For any $x, y \in \tilde{\Delta}^{K-1}$, let $\hat{x}=\left(x / K, 1-\sum_{i} x_{i} / K\right) \in \mathbb{R}^{K+1}$ and $\hat{y}=\left(y / K, 1-\sum_{i} y_{i} / K\right) \in \mathbb{R}^{K+1}$. Observe that \hat{x} and $\hat{y} \in \Delta^{K}$. Let

$$
\hat{S} \in \mathbb{R}^{(K+1) \times(K+1)}, \hat{S}=\left(\begin{array}{cc}
S & 0 \\
0 & 0
\end{array}\right)
$$

\hat{S} is a zero padded extension of S and is therefore hashable by Lemma 1.9. That is, there exists a $\lambda_{\hat{S}}$ and for any $\epsilon>0$, a distribution on a family of functions $\hat{\mathcal{H}}$ such that

$$
0 \leq \operatorname{Pr}_{\hat{h}_{1}, \hat{h}_{2} \in \hat{\mathcal{H}}}\left(\hat{h}_{1}(\hat{x})=\hat{h}_{2}(\hat{y})\right)-\hat{x}^{T} \hat{S} \hat{y} \leq \epsilon
$$

Observe that $\hat{x}^{T} \hat{S} \hat{y}=x^{T} S y$. Therefore

$$
0 \leq \operatorname{Pr}_{\hat{h}_{1}, \hat{h}_{2} \in \hat{\mathcal{H}}}\left(\hat{h}_{1}(\hat{x})=\hat{h}_{2}(\hat{y})\right)-x^{T} S y \leq \epsilon
$$

Let $h(z)=\hat{h}(\hat{z})$, for any $z \in \tilde{\Delta}^{K-1}$. Observe that $\operatorname{Pr}\left(h_{1}(x)=h_{2}(y)\right)=\operatorname{Pr}\left(\hat{h}_{1}(\hat{x})=\hat{h}_{2}(\hat{y})\right)$. Therefore,

$$
0 \leq \operatorname{Pr}\left(h_{1}(x)=h_{2}(y)\right)-x^{T} S y \leq \epsilon
$$

By Definition $1.14, S$ is generally hashable.

