Supplementary Material: Hierarchical Semantic Indexing for Large Scale Image Retrieval

Jia Deng ^{1,3}	Alexander C. Berg ²	Li Fei-Fei ³
Princeton University ¹	Stony Brook University ²	Stanford University ³

1. Proofs

Remark 1.1. We first provide proofs and constructions for probability vectors for non-overlapping categories (Lemma 1.4–1.12), *i.e.* $x \in \mathbb{R}^{K}, \sum_{i} x_{i} = 1, 0 \leq x_{i} \leq 1$ for i = 1, ..., K. We use Δ^{K-1} to denote the set of all such vectors. In Lemma 1.15, we show extension to the general case where $x \in \mathbb{R}^{K}, 0 \leq x_{i} \leq 1$ for i = 1, ..., K (but does not necessarily sum to one). We use Δ^{K-1} to denote the set of all such vectors.

Definition 1.2. A matrix $S \in \mathbb{R}^{K \times K}$ is *hashable*, if there exists a $\lambda_S > 0$ and, for any $\epsilon > 0$, a distribution on a family $\mathcal{H}(S, \epsilon)$ of hash functions $h(\cdot; S, \epsilon)$ such that for any $x, y \in \Delta^{K-1}$,

$$0 \le \Pr\left(h_1(x; S, \epsilon) = h_2(y; S, \epsilon)\right) - \lambda_S \cdot x^T S y \le \epsilon$$

where h_1 and h_2 are drawn independently from $\mathcal{H}(S, \epsilon)$.

Remark 1.3. Here we relax the equality in the LSH condition $Pr(h_1(x) = h_2(y)) = Sim(x, y)$ to equality up to ϵ . This has virtually no practical impact because in all of our constructions ϵ can be easily made negligibly small, without incurring any additional computational cost. Also note that scaling S does not affect the ranking induced by the similarity $x^T Sy$.

Lemma 1.4. If S is symmetric, element-wise non-negative and diagonally dominant, that is, $\forall i = 1, ..., K, \ s_{ii} \ge \sum_{j \ne i} s_{ij}$, then S is hashable.

Proof. Define a $K \times (K+1)$ matrix $\Theta = (\theta_{ij})$, where

$$\begin{aligned} \theta_{ij} &= \sqrt{\hat{s}_{ij}}, \ \forall i = 1, \dots, K, \ \forall j = 1, \dots, K, \ i \neq j \\ \theta_{ii} &= \sqrt{\hat{s}_{ii} - \sum_{j \neq i} \hat{s}_{ij}}, \ \forall i = 1, \dots, K. \\ \theta_{i,K+1} &= 1 - \sum_{j=1}^{K} \theta_{ij}, \ \forall i = 1, \dots, K. \end{aligned}$$

where $\hat{S} = \lambda_S \cdot S$ with λ_S chosen to ensure $\theta_{i,K+1} \ge 0$. Note that each row of Θ sums to one. Also note that $\theta_{ij} = \theta_{ji}, \forall i, j \le K$ due to the symmetry of S.

Consider hash functions h(x) that map a probability vector to a set of positive integers, that is, $h : \Delta^{K-1} \to 2^{\mathbb{N}}$ where $2^{\mathbb{N}}$ is all subsets of natural numbers. Note that h(x) = h(y) is defined as *set equality*, that is, the ordering of elements does not matter.

To construct $\mathcal{H}(S, \epsilon)$, let $N \ge 1/\epsilon$. Then $h(x; S, \epsilon)$ is computed as follows:

1. Sample
$$\alpha \in \{1, \ldots, K\} \sim multi(x)$$

2. Sample $\beta \in \{1, \ldots, K+1\} \sim multi(\theta_{\alpha})$ where θ_{α} is the α^{th} row of Θ .

3. If
$$\beta \leq K$$
, return $\{\alpha, \beta\}$

4. Randomly pick γ from $\{K + 1, \dots, K + N\}$, return $\{\gamma\}$.

In implementation, h is parametrized by three uniformly drawn values $p, q \in [0, 1]$ and $r \in \{1 \dots N\}$, used respectively in the sampling process for α , β and γ .

Let x, y be probability vectors, $x, y \in \Delta^{K-1}$. Let $\alpha_x, \beta_x, \gamma_x$ be the values sampled when computing h(x), and similarly for $\alpha_y, \beta_y, \gamma_y$. To compute $\Pr(h(x) = h(y))$, consider two cases below. **Case 1:** Suppose $\alpha_x = i \in \{1, \dots, K\}, \alpha_y = j \in \{1, \dots, K\}, i \neq j$. Then

$$\begin{aligned} \Pr(h(x) = h(y) \mid \alpha_x = i \land \alpha_y = j) &= & \Pr(\beta_x = j \land \beta_y = i \mid \alpha_x = i \land \alpha_y = j) + \\ & \Pr(\gamma_x = \gamma_y \land \beta_x = K + 1 \land \beta_y = K + 1 \mid \alpha_x = i \land \alpha_y = j) \\ &= & \Pr(\beta_x = j \mid \alpha_x = i) \times \Pr(\beta_y = i \mid \alpha_y = j) + \\ & \Pr(\gamma_x = \gamma_y \mid \beta_x = K + 1, \beta_y = K + 1) \times \\ & \Pr(\beta_x = K + 1 \mid \alpha_x = i) \times \Pr(\beta_y = K + 1 \mid \alpha_y = j) \\ &= & \theta_{ij}\theta_{ji} + \frac{1}{N} \ \theta_{i,K+1}\theta_{j,K+1} \\ &= & \hat{s}_{ij} + \frac{1}{N} \ \theta_{i,K+1}\theta_{j,K+1} \end{aligned}$$

Case 2: Suppose $\alpha_x = \alpha_y = i \in \{1, \dots, K\}$. Then

$$\begin{aligned} \Pr(h(x) = h(y) \mid \alpha_x = \alpha_y = i) &= & \Pr(\beta_x = \beta_y \le K \mid \alpha_x = \alpha_y = i) + \\ & \Pr(\gamma_x = \gamma_y \land \beta_x = K + 1 \land \beta_y = K + 1 \mid \alpha_x = \alpha_y = i) \\ &= & \sum_{j=1}^K \Pr(\beta_x = \beta_y = j \mid \alpha_x = \alpha_y = i) + \\ & \Pr(\gamma_x = \gamma_y \mid \beta_x = K + 1, \beta_y = K + 1) \times \\ & \Pr(\beta_x = K + 1 \mid \alpha_x = i) \times \Pr(\beta_y = K + 1 \mid \alpha_y = j) \\ &= & \sum_{j=1}^K \theta_{ij}^2 + \frac{1}{N} \; \theta_{i,K+1}^2 \\ &= & \hat{s}_{ii} + \frac{1}{N} \; \theta_{i,K+1}^2 \end{aligned}$$

Summing up the above conditional probabilities, we get

$$Pr(h(x) = h(y)) = \sum_{i \neq j} x_i y_j Pr(h(x) = h(y) | \alpha_x = i \land \alpha_y = j) +$$
$$\sum_i x_i y_i Pr(h(x) = h(y) | \alpha_x = \alpha_y = i)$$
$$= \sum_{i,j} x_i \hat{s}_{ij} y_j + \frac{1}{N} \sum_{i \neq j} x_i y_j \theta_{i,K+1} \theta_{j,K+1} + \frac{1}{N} \sum_i x_i y_i \theta_{i,K+1}^2$$
$$= \lambda_S x^T S y + \frac{1}{N} \sum_{i,j} x_i y_j \theta_{i,K+1} \theta_{j,K+1}$$

To conclude the proof, observe that

$$0 \le \frac{1}{N} \sum_{i,j} x_i y_j \theta_{i,K+1} \theta_{j,K+1} \le \frac{1}{N} \left(\sum_i x_i \theta_{i,K+1} \right) \left(\sum_j x_j \theta_{j,K+1} \right) \le \epsilon$$

	_	7	
		1	
		1	
_		_	

Remark 1.5. For the special case where S is the identity matrix, h(x; S) reduces to h(x; I), which returns an $\alpha \in \{1, ..., K\}$ sampled from multi(x).

Lemma 1.6. If S is a matrix of all ones, then S is hashable.

Proof. Note that $x^T S y = 1$ in this case since $x, y \in \Delta^{K-1}$. Simply let \mathcal{H} consist of one constant function.

Definition 1.7. A matrix $Q \in \mathbb{R}^{m \times m}$ is a zero padded extension of $S \in \mathbb{R}^{n \times n}$ if there exists an one-to-one function f that maps the indices $\tau = \{1 \dots n\}$ to $\{1 \dots m\}$ such that $Q_{i,j} = S_{f^{-1}(i),f^{-1}(j)}$ for any $i, j \in f(\tau)$ and $Q_{i,j} = 0$ otherwise.

Remark 1.8. In other words, Q is obtained by symmetrically inserting rows and columns of zeros into S.

Lemma 1.9. If Q is a zero padded extension of S and S is hashable, then Q is hashable.

Proof. Let $\epsilon > 0$, and let $x, y \in \Delta^{K-1}$. Define $x_{f(\tau)} \in \mathbb{R}^n$ such that its i^{th} element is $x_{f^{-1}(i)}$. We the define $g(x; Q, \epsilon)$ as follows:

- 1. Sample $\alpha \in \{1, \ldots, m\} \sim multi(x)$
- 2. If $\alpha \in f(\tau)$, return $\left(0, h(\frac{x_{f(\tau)}}{||x_{f(\tau)}||_1}; S, \frac{\epsilon}{2})\right)$, where $h \in \mathcal{H}(S, \frac{\epsilon}{2})$ as in Definition 1.2 Else return $\beta \in \{1, \dots, N\}$ uniformly drawn, where $N = \lceil 2/\epsilon \rceil$.

We now show Q is hashable.

$$\begin{aligned} \Pr\left(g(x;Q,\epsilon) &= g(y;Q,\epsilon)\right) &= & \Pr\left(\alpha_x \in f(\tau) \land \alpha_y \in f(\tau) \land h\left(\frac{x_{f(\tau)}}{||x_{f(\tau)}||_1};S,\frac{\epsilon}{2}\right) = h\left(\frac{y_{f(\tau)}}{||y_{f(\tau)}||_1};S,\frac{\epsilon}{2}\right)\right) \\ &+ & \Pr\left(\beta_x = \beta_y\right) \\ &= & ||x_{f(\tau)}||_1 \cdot ||y_{f(\tau)}||_1 \cdot \left(\lambda_S \frac{x_{f(\tau)}^T}{||x_{f(\tau)}||_1} S \frac{y_{f(\tau)}}{||y_{f(\tau)}||_1} + \delta\right) \\ &+ & \frac{1}{N} (1 - ||x_{f(\tau)}||_1) (1 - ||y_{f(\tau)}||_1) \\ &= & \lambda_S \cdot x^T Qy + ||x_{f(\tau)}||_1 \cdot ||y_{f(\tau)}||_1 \cdot \delta + \frac{1}{N} (1 - ||x_{f(\tau)}||_1) (1 - ||y_{f(\tau)}||_1) \end{aligned}$$

where $0 \le \delta \le \epsilon/2$ by the choice of h. Note that

$$||x_{f(\tau)}||_1 \cdot ||y_{f(\tau)}||_1 \cdot \delta + \frac{1}{N}(1 - ||x_{f(\tau)}||_1)(1 - ||y_{f(\tau)}||_1) \le \epsilon/2 + \epsilon/2 = \epsilon$$

Lemma 1.10. If S is hashable, then aS is hashable for any a > 0.

Proof. This follows directly from Definition 1.2 (by using $\lambda_{aS} = \frac{1}{a}\lambda_S$).

Lemma 1.11. If $Q = \sum_{l=1}^{L} S_l$ and S_l is hashable for $l = 1, \ldots, L$, then Q is hashable.

Proof. Suppose the hash function for S_l is h_l and the scalar is λ_{S_l} , for l = 1, ..., L. Let $z = \sum_{l=1}^{L} \frac{1}{\sqrt{\lambda_{S_l}}}$ and $\theta \in \mathbb{R}^L$ where $\theta_l = \frac{1}{z} \cdot \frac{1}{\sqrt{\lambda_{S_l}}}$. We construct hash function $g(x; Q, \epsilon)$ as follows:

- 1. Sample $\alpha \in \{1, \ldots, L\} \sim multi(\theta)$.
- 2. return $(\alpha, h_{\alpha}(x; S_l, \epsilon/L))$.

Then

$$\Pr\left(g(x;Q,\epsilon) = g(y;Q,\epsilon)\right) = \sum_{l=1}^{L} \Pr\left(\alpha_x = \alpha_y = l \wedge h_l(x;S_l,\epsilon/L) = h_l(y;S_l,\epsilon/L)\right)$$
$$= \sum_{l=1}^{L} \theta_l^2 (\lambda_{S_l} x^T S_l y + \delta_l)$$
$$= \frac{1}{z^2} x^T Q y + \sum_{l=1}^{L} \theta_l^2 \delta_l$$

where $0 \le \delta_l \le \epsilon/L$. Note that $0 \le \sum_l^L \theta_l^2 \delta_l \le \epsilon$ and thus Q is hashable.

Lemma 1.12. Let T = G(V, E) be a rooted tree and define $\pi_{m,n}$ to be the lowest common ancestor between node m and n for any $m, n \in V$. Let $V_r \subseteq V$ be subtree rooted at r (i.e., the set of all nodes descending from node $r \in V$ including r itself). Let $\Omega_r \subseteq V_r$ be all the leaf nodes of r and let $K_r = |\Omega_r|$. Let $f_r : \Omega_r \to \{1, \ldots, K_r\}$ be a one-to-one correspondence of the leaf nodes of r to a set of integers. Let $\xi(\cdot) : V \to \mathbb{R}$ be any function defined on V. Let $S^{(r,\xi)} \in \mathbb{R}^{K_r \times K_r}$ be a similarity matrix induced by r and ξ , where $S_{ij}^{(r,\xi)} = \xi(\pi_{f_r^{-1}(i), f_r^{-1}(j)}), \forall i = 1, ..., K_r, j = 1, ..., K_r$. For any $r \in V$, if $\xi(\cdot)$ is non-negative and downward non-decreasing in the subtree of r, that is, $\xi(q) \ge 0$ for any $q \in V_r$

and $\xi(q) \geq \xi(p)$ for any $p, q \in V_r$ such that q is a child of p, then $S^{(r,\xi)}$ is hashable.

Proof. Let $r \in V$. Suppose $\xi(\cdot)$ is non-negative and downward non-decreasing in the subtree of r. We prove the claim by induction on the tree.

If r is a leaf node, then $S^{(r,\xi)}$ is a scalar and thus hashable.

Now we consider the case when r is an internal node. Let $\sigma(r)$ be the set of direct children of r. Our inductive hypothesis is that given any $c \in \sigma(r)$, the similarity matrix $S^{(c,\xi')}$ induced by c and any $\xi' : V_c \to \mathbb{R}$, which is non-negative and downward non-decreasing, is hashable.

For a given $c \in \sigma(r)$, let $f_r(\Omega_c)$ be the set of indices of the leaf nodes of c in $S^{(r,\xi)}$. The tree structure implies

$$\bigcup_{c \in \sigma(r)} f_r(\Omega_c) = \{1, \dots, K_r\}$$
(1)

and

$$f_r(\Omega_c) \bigcap f_r(\Omega_d) = \emptyset$$
, for any $c, d \in \sigma(r)$ and $c \neq d$. (2)

That is, the columns and rows of $S^{(r,\xi)}$ can be partitioned by the direct children of r.

Also, if c and d are different direct children of r, then the lowest common ancestor between the descendant nodes of c and those of d must be r. Thus

$$S_{f_r(\Omega_c), f_r(\Omega_d)}^{(r,\xi)} = \xi(\pi_{\Omega_c, \Omega_d}) = \xi(r) \cdot \mathbf{1}, \text{ for any } c, d \in \sigma(r) \text{ and } c \neq d.$$
(3)

where **1** is a matrix of all ones.

For a given $c \in \sigma(r)$, define $Q^{(c)} \in \mathbb{R}^{K_r \times K_r}$ such that

$$Q_{ij}^{(c)} = \begin{cases} S_{ij}^{(r,\xi)} - \xi(r) & \text{if } i, j \in f_r(\Omega_c) \\ 0 & \text{otherwise.} \end{cases}$$

It follows from (1), (2) and (3) that

$$S^{(r,\xi)} = \xi(r) \cdot \mathbf{1} + \sum_{c \in \sigma(r)} Q^{(c)}$$

$$\tag{4}$$

Define $\xi'(\cdot) = \xi(\cdot) - \xi(r)$. Since the lowest common ancestor of the leaf nodes of r cannot be higher than r and ξ is downward non-decreasing, we conclude that $\xi'(d) \ge 0$ for any $d \in V_r$ and $\xi'(d)$ is downward non-decreasing.

By the inductive hypothesis, given any $c \in \sigma(r)$, the similarity matrix $S^{(c,\xi')}$ induced by c and ξ' is hashable.

Now we show that $Q^{(c)}$ is a zero padded extension of $S^{(c,\xi')}$.

Let $K_c = |\Omega_c|$ and f_c be the function that maps the nodes in Ω_c to indices of $S^{(c,\xi')}$. Recall that f_r maps nodes in Ω_r (including Ω_c) to indices in $S^{(r,\xi)}$.

Let $f: \{1, \ldots, K_c\} \to \{1, \ldots, K_r\}$, where $f = f_r \cdot f_c^{-1}$. Let $\tau = \{1, \ldots, K_c\}$. It follows that $f(\tau) = f_r(\Omega_c)$. For any $i, j \in f(\tau)$, that is, $\forall i, j \in f_r(\Omega_c)$,

$$\begin{split} Q_{ij}^{(c)} &= S_{ij}^{(r,\xi)} - \xi(r) \\ &= \xi(\pi_{f_r^{-1}(i),f_r^{-1}(j)}) - \xi(r) \text{(By definition of } f_r) \\ &= \xi'(\pi_{f_r^{-1}(i),f_r^{-1}(j)}) \text{(By definition of } \xi') \\ &= S_{f_c\cdot f_r^{-1}(i),f_c\cdot f_r^{-1}(j)}^{(c,\xi')} \text{(By definition of } f_c) \\ &= S_{f^{-1}(i),f^{-1}(j)}^{(c,\xi')} \end{split}$$

By Definition 1.7, $Q^{(c)}$ is a zero padded extension of $S^{(c,\xi')}$ and is therefore hashable by Lemma 1.9. It follows from Lemma 1.6, Lemma 1.10, Lemma 1.11 and from (4) that $S^{(r,\xi)}$ is hashable.

Remark 1.13. Note that a similarity matrix derived from a hierarchy, as in Lemma 1.12, is not necessarily diagonally dominant. For example, if a leaf node has many siblings, the sum of its similarities with its siblings can easily be more than its self similarity.

Definition 1.14. A matrix $S \in \mathbb{R}^{K \times K}$ is *generally hashable*, if there exists a $\lambda_S > 0$ and, for any $\epsilon > 0$, a distribution on a family $\mathcal{H}(S,\epsilon)$ of hash functions $h(\cdot; S, \epsilon)$ such that for any $x, y \in \tilde{\Delta}^{K-1}$,

$$0 \le \Pr\left(h_1(x; S, \epsilon) = h_2(y; S, \epsilon)\right) - \lambda_S \cdot x^T S y \le \epsilon$$

where h_1 and h_2 are drawn independently from $\mathcal{H}(S, \epsilon)$.

Lemma 1.15. Hashing for the general case. Any hashable matrix $S \in \mathbb{R}^{K \times K}$ is generally hashable.

Proof. For any $x, y \in \tilde{\Delta}^{K-1}$, let $\hat{x} = (x/K, 1 - \sum_i x_i/K) \in \mathbb{R}^{K+1}$ and $\hat{y} = (y/K, 1 - \sum_i y_i/K) \in \mathbb{R}^{K+1}$. Observe that \hat{x} and $\hat{y} \in \Delta^K$. Let

$$\hat{S} \in \mathbb{R}^{(K+1) \times (K+1)}, \hat{S} = \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix}$$

 \hat{S} is a zero padded extension of S and is therefore hashable by Lemma 1.9. That is, there exists a $\lambda_{\hat{S}}$ and for any $\epsilon > 0$, a distribution on a family of functions $\hat{\mathcal{H}}$ such that

$$0 \leq \Pr_{\hat{h}_1, \hat{h}_2 \in \hat{\mathcal{H}}}(\hat{h}_1(\hat{x}) = \hat{h}_2(\hat{y})) - \hat{x}^T \hat{S} \hat{y} \leq \epsilon.$$

Observe that $\hat{x}^T \hat{S} \hat{y} = x^T S y$. Therefore

$$0 \leq \Pr_{\hat{h}_1, \hat{h}_2 \in \hat{\mathcal{H}}}(\hat{h}_1(\hat{x}) = \hat{h}_2(\hat{y})) - x^T S y \leq \epsilon.$$

Let $h(z) = \hat{h}(\hat{z})$, for any $z \in \tilde{\Delta}^{K-1}$. Observe that $\Pr(h_1(x) = h_2(y)) = \Pr(\hat{h}_1(\hat{x}) = \hat{h}_2(\hat{y}))$. Therefore,

$$0 \le \Pr(h_1(x) = h_2(y)) - x^T S y \le \epsilon.$$

By Definition 1.14, S is generally hashable.