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1. Proofs

Remark 1.1. We first provide proofs and constructions for probability vectors for non-overlapping categories (Lemma 1.4—
1.12), i.e. ¢ € RK,Zi r; = 1,0 < 2; < 1fori =1,..., K. We use AX~! to denote the set of all such vectors. In
Lemma 1.15, we show extension to the general case where € R¥ 0 < z; < 1fori = 1,..., K (but does not necessarily
sum to one). We use AKX~ to denote the set of all such vectors.

Definition 1.2. A matrix S € RE*X is hashable, if there exists a Ag > 0 and, for any € > 0, a distribution on a family
H(S, €) of hash functions h(-; S, €) such that for any z,y € AK~1,

0 < Pr(hy(x;S,€) = ha(y; S,€)) — As-2'Sy<e
where hq and ho are drawn independently from H(S, ¢€).

Remark 1.3. Here we relax the equality in the LSH condition Pr(h (z) = ha(y)) = Sim(z,y) to equality up to e. This has
virtually no practical impact because in all of our constructions e can be easily made negligibly small, without incurring any
additional computational cost. Also note that scaling S does not affect the ranking induced by the similarity 27 Sy.

Lemma 1.4. If S is symmetric, element-wise non-negative and diagonally dominant, that is,
Vi=1,...,K, s; > Z#i sij, then S is hashable.

Proof. Define a K x (K + 1) matrix © = (6;;), where

Oi; = 8, Vi=1,....K,Vji=1,... K, i#j.
0ii = 51‘71*257;]‘, Vi=1,...,K.
J#i
K
Oiky1 = 1*29@‘, Vi=1,..., K.

j=1

where S = \g - S with Ag chosen to ensure 0;,k+1 > 0. Note that each row of © sums to one. Also note that 0;; =
0;i,Vi,j < K due to the symmetry of S.

Consider hash functions h(x) that map a probability vector to a set of positive integers, that is, b : AX~1 — 2N where 2N
is all subsets of natural numbers. Note that h(x) = h(y) is defined as set equality, that is, the ordering of elements does not
matter.

To construct H(S, €), let N > 1/e. Then h(z; S, €) is computed as follows:

1. Sample o € {1,..., K} ~ multi(x)
2. Sample 3 € {1,..., K + 1} ~ multi(f,) where 0, is the a*" row of ©.
3. If 8 < K, return {cv, 5}



4. Randomly pick y from {K + 1,..., K + N}, return {v}.

In implementation, & is parametrized by three uniformly drawn values p,q € [0,1] and € {1... N}, used respectively
in the sampling process for «;, 3 and 7.

Let 2,y be probability vectors, z,y € AX~1. Let a,, 3., 7. be the values sampled when computing h(z), and similarly
for oy, By, vy- To compute Pr(h(x) = h(y)), consider two cases below.

Case 1: Suppose oy =i € {1,..., K}, ay =j €{1,...,K}, i % j. Then

Pr(h(z) =h(y) |ae =iNay=j) = Pr(fe=jAfy=ilaz =i Nay=]j)+
Pr(vg = Ao =K+1AN[By=K+1|a,=1iANay =7)

1B =j | ow =) x Pr(By =i | ay =j) +

Pr(v, =7 | B =K +1,8,= K +1) x

Pr(f6, = K+1|az—z)xPr(ﬁy K+1]|a,=17)

[
-

= 040 + 9i,K+19j,K+1
. 1
= &+ N 0i, k+105, K +1

Case 2: Suppose o, = oy =i € {1,..., K}. Then

Pr(h(z) =h(y) |z =ay =1i) = Pr(Be =8, < K|az =a,=1i)+
Pr(va =W AB:=K+1ABy=K+1|a; =y =1)
K

= Y Prf=py=jlas=ay=i)+
Pr(ve =7y | Bo =K +1,8, = K +1) x
P(ﬁw:K-f-l|aw=i)XPr(ﬁy:K+1|ay:j)
- 2912]+ 02K+1
j=1

. 1
= Sty 07 k1

= oA

Summing up the above conditional probabilities, we get
Pr(h(z) = h(y)) = Y iy Pr(h(e) = h(y)law =i N ay =) +
i#]

>tk Pr(i(o) = h(0)lo =y =

= Zl'zszjy] + = leyj i K+19 K41+ szyz i, K+1
i,J #J

= AsxTSy + N Z xiyjei,KHHj,KH
1,3

To conclude the proof, observe that

0 < 7szy] 1K+193 K+1 < = (szoz K+1> ijaj,K—i-l <e€
J

,J



Remark 1.5. For the special case where S is the identity matrix, h(z; S) reduces to h(x; I'), whichreturns an v € {1,..., K}
sampled from multi(x).

Lemma 1.6. If S is a matrix of all ones, then S is hashable.
Proof. Note that 27 Sy = 1 in this case since 2,y € AK~1. Simply let H consist of one constant function. O

Definition 1.7. A matrix Q € R™*™ is a zero padded extension of S € R™*" if there exists an one-to-one function f that
maps the indices 7 = {1...n} to {1...m} such that Q; ; = Sy-1(;) y-1(;) forany 4, j € f(7) and Q; ; = 0 otherwise.

Remark 1.8. In other words, () is obtained by symmetrically inserting rows and columns of zeros into S.
Lemma 1.9. If Q is a zero padded extension of S and S is hashable, then Q) is hashable.

Proof. Lete > 0, and let z,y € AX~1. Define 2.,y € R™ such that its i'" element is x ;—1(;). We the define g(z; Q, €) as
follows:

1. Sample o € {1,...,m} ~ multi(x)

2. If a € f(r), return (0, h(to—: S, %)), where h € H(S, §) as in Definition 1.2

)
lNzgpll?
Else return § € {1,..., N} uniformly drawn, where N = [2/€].

We now show () is hashable.

Pr(g(:Q.) = g0:Q.0) = Pr (az € f(r) hay € F(r) A B (””“’;s, ) —h (yf” s, ))
gy’ 2 Nyrenll’ 2
+ Pr (ﬂx = ﬂy)

.TZT
f(r) Y1)
— zgo - llyseoll - [ As S v
sl s s v lh

1
+ N(l =Mzl @ = [lysen )
1
= As 2" Qy+Ilzyn - Nyl -6+ N(l =z ) = [lysem )

where 0 < 0 < €/2 by the choice of h. Note that

1
gyl Nypeyll -6 + N(l —Nzrll) A = lypnlh) <€/2+€e/2=¢

Lemma 1.10. [f S is hashable, then a.S is hashable for any a > 0.

Proof. This follows directly from Definition 1.2 (by using A\,s = %/\ s)-

Lemma 1.11. IfQ = ZZL:1 S; and Sy is hashable forl =1, ..., L, then Q is hashable.

Proof. Suppose the hash function for S; is h; and the scalar is Ag,, for{ =1,..., L.
_\L 1 L _1._1
Letz=) ", T and 0 € R” where 0; = -

Vs,
We construct hash function g(x; @, €) as follows:

1. Sample o € {1,..., L} ~ multi(9).
2. return (v, ho (x5 S1,€/L)).



Then

L
Pr(g(w;Q,e):g(y;Q,e)) = ZPr(am:ay:lAhl(m.;She/L):hl(y;sl76/L))
=1

L
= 0Z(\s,z" Sy + 6)
=1

L

1 T 2

= S Qu+> 076
=1

where 0 < §; < ¢/L. Note that 0 < ZlL 6?6, < € and thus @ is hashable.
O

Lemma 1.12. Let T = G(V, E) be a rooted tree and define m,, ,, to be the lowest common ancestor between node m and n
foranym,n € V. Let V. C 'V be subtree rooted at r (i.e., the set of all nodes descending from node r € V including r itself).
Let Q,. C V, be all the leaf nodes of r and let K, = |Q,|. Let f. : Q. — {1,..., K.} be a one-to-one correspondence of
the leaf nodes of  to a set of integers. Let £(+) : V' — R be any function defined on' V. Let S8 ¢ RE*Kr be g similarity
matrix induced by r and &, where S’i(;’g) = g(ﬂf:l(i),f;l(j)),Vi =1,....K.,5=1,...,K,.

Forany r € V, if £(-) is non-negative and downward non-decreasing in the subtree of r, that is, £(q) > 0 for any q € V,.
and £(q) > &(p) for any p,q € V;. such that q is a child of p, then S"%) is hashable.

Proof. Letr € V. Suppose £(-) is non-negative and downward non-decreasing in the subtree of ». We prove the claim by
induction on the tree.

If r is a leaf node, then S(™¢) is a scalar and thus hashable.

Now we consider the case when r is an internal node. Let o(r) be the set of direct children of r. Our inductive hypothesis
is that given any ¢ € o(r), the similarity matrix S (©£) induced by ¢ and any ¢ : V. — R, which is non-negative and
downward non-decreasing, is hashable.

For a given ¢ € o(), let f,.(£2.) be the set of indices of the leaf nodes of ¢ in S(™¢). The tree structure implies

U #@)={,... K} (1)
ceo(r)
and
Fr(Q0) ﬂ fr(Qq) =0, forany ¢,d € o(r)and ¢ #£ d . 2)

That is, the columns and rows of S("€) can be partitioned by the direct children of 7.
Also, if ¢ and d are different direct children of r, then the lowest common ancestor between the descendant nodes of ¢ and
those of d must be . Thus

S;?(%c),fr(ﬁd) =&(ma,.,0,) =&(r) - 1,forany c,d € o(r) andc # d . 3)

where 1 is a matrix of all ones.
For a given ¢ € o(r), define Q¢ € RE~*Xr such that

0© — [ S5V —€(r) ifije fr()
I 0 otherwise.
It follows from (1), (2) and (3) that
SE) —g(r) -1+ Z Q© 4)
ceo(r)

Define &'(-) = &(-) — &(r). Since the lowest common ancestor of the leaf nodes of r cannot be higher than r and ¢ is
downward non-decreasing, we conclude that &’'(d) > 0 for any d € V,. and &’(d) is downward non-decreasing.
By the inductive hypothesis, given any ¢ € ¢(r), the similarity matrix S(>¢") induced by ¢ and ¢’ is hashable.



Now we show that Q(¢) is a zero padded extension of S(ed),

Let K. = |Q¢| and f, be the function that maps the nodes in €. to indices of S (€' Recall that fr maps nodes in §2,.
(including €2.) to indices in S("%).

Let f:{1,...,K.} = {1,...,K,},where f = f.- f. 1. Let7 = {1,..., K.}. It follows that f(7) = f(Q.).

For any 4,5 € f(7), thatis, Vi, € f.(9.),

Q5 = S5 e
= &m0y 51 () — E(r)(By definition of f,)
= 5/(7T4f;1(i)7f;1(j))(By definition of £’)
—_— (C’gl) ..
= Sfc-ffl(i),fc~f:1(j)(By definition of f.)

_ qled)
Syl G).r-10)

By Definition 1.7, Q(°) is a zero padded extension of S (¢€) and is therefore hashable by Lemma 1.9. It follows from

Lemma 1.6, Lemma 1.10, Lemma 1.11 and from (4) that S(€) is hashable. O

Remark 1.13. Note that a similarity matrix derived from a hierarchy, as in Lemma 1.12, is not necessarily diagonally dom-
inant. For example, if a leaf node has many siblings, the sum of its similarities with its siblings can easily be more than its
self similarity.

Definition 1.14. A matrix S € RE*¥ is generally hashable, if there exists a Ag > 0 and, for any € > 0, a distribution on a
family (S, €) of hash functions h(-; S, €) such that for any z,y € AK~1,

0 < Pr(hy(z;S,€) = ha(y; S,€)) — Ag -2 Sy <e
where hq and hq are drawn independently from H(S, ).

Lemma 1.15. Hashing for the general case. Any hashable matrix S € R¥*¥ is generally hashable.

Proof. Forany z,y € AKX~ letd = (¢/K,1 -, 2;/K) € RE*land § = (y/K,1 - Y, y;/K) € RE+1. Observe that
#and ) € AK. Let
G e RUESHDX(K+1) & _ ( S 0 )
’ 0 0

S is a zero padded extension of S and is therefore hashable by Lemma 1.9. That is, there exists a A4 and for any € > 0, a
distribution on a family of functions H such that

0<Pr }”Ilﬁzeﬂ(ﬁl(j) = ho(f)) — 2" 5) <e.
Observe that i:TS';Q = 7' Sy. Therefore
0 <Prj, jer(fn(#) =ha(§)) — 27 Sy <e.
Let h(z) = h(Z),for any z € AK~1 Observe that Pr(hy () = ha(y)) = Pr(hy(2) = ha(§)). Therefore,
0 < Pr(hi(z) = ha(y)) — 27 Sy < e.

By Definition 1.14, S is generally hashable. O



