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Abstract

We present a novel generative model for simultaneously
recognizing and segmenting object and scene classes. Our
model is inspired by the traditional bag of words represen-
tation of texts and images as well as a number of related
generative models, including probabilistic Latent Sematic
Analysis (pLSA) and Latent Dirichlet Allocation (LDA). A
major drawback of the pLSA and LDA models is the as-
sumption that each patch in the image is independently gen-
erated given its corresponding latent topic. While such rep-
resentation provide an ef�cient computational method, it
lacks the power to describe the visually coherent images
and scenes. Instead, we propose a spatially coherent la-
tent topic model (Spatial-LTM). Spatial-LTM represents an
image containing objects in a hierarchical way by over-
segmented image regions of homogeneous appearances and
the salient image patches within the regions. Only one sin-
gle latent topic is assigned to the image patches within each
region, enforcing the spatial coherency of the model. This
idea gives rise to the following merits of Spatial-LTM: (1)
Spatial-LTM provides a uni�ed representation for spatially
coherent bag of words topic models; (2) Spatial-LTM can
simultaneously segment and classify objects, even in the
case of occlusion and multiple instances; and (3) Spatial-
LTM can be trained either unsupervised or supervised, as
well as when partial object labels are provided. We verify
the success of our model in a number of segmentation and
classi�cation experiments.

1. Introduction

Understanding images and their semantic contents is an
important and challenging problem in computer vision. In
this work, we are especially interested in simultaneously
learning object/scene category models and performing seg-
mentation on the detected objects. We present a novel gen-
erative model for both unsupervised and supervised classi-
�cation.

In recent years, bag of words models (e.g., probabilistic
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Figure 1. (This �gure must be viewed in colors) Comparison of
the bag of words model and our proposed model, Spatial-LTM.
Panel A shows the original input image. Panel E shows the input
regions to Spatial-LTM provided by a over-segmentation method.
Panels B and F in Column 2 illustrate the initial latent topicas-
signments to the image patches by either the traditional bagof
words model (LDA) or Spatial-LTM. The circles denote the visual
words provided by local interest point detectors. Different colors
of the circles denote different latent topics of the patch. Panels C
and G in Column 3 illustrate the latent topic assignments after the
models have learned the object classes. Most of the patches on
the human face are colored in red, indicating that the modelshave
successfully recognized object. Finally, Panel D and H in Column
4 show the segmentation results of LDA and Spatial-LTM respec-
tively. One can see that by encoding the spatial coherency ofthe
image patches, Spatial-LTM achieves a much better segmentation
of the object.

Latent Sematic Analysis (pLSA) [13] and Latent Dirich-
let Allocation (LDA) [2]) have shown much success for
text analysis and information retrieval. Inspired by this,
a number of computer vision works have demonstrated
impressive results for image analysis and classi�cation
[6, 7, 27, 11, 25, 22, 20] using the bag of words models.
Such models are attractive due to the computational ef�-
ciency and their ability of representing images and objects
with dense patches. This is achieved by an assumption in
bag of words models where the spatial relationships of the
image patches or object parts are ignored. In contrast, object



models that explicitly encode spatial information among the
parts or regions usually require formidable computational
costs in inference [12, 10, 16], forcing these algorithms to
often represent objects with a very few number of parts.

One should observe, however, there is a distinct differ-
ence between image and text analysis: there are no natu-
ral visual analogues of words. In other words, text doc-
uments are naturally composed of distinctive vocabularies
while there is no such obvious word-level representation in
images. To borrow the algorithms from text analysis, the
researchers usually employ various local detectors [15, 23],
and describe them as “visual words” that play the role of vo-
cabulary words in the bag of words model. Although mod-
ern local detectors and descriptors offer powerful character-
ization of images, the bag of visual words representation re-
sulted from these detectors have some inherent weaknesses.
First, detected regions on an image are often sparse, leaving
many uncovered areas of the images. When one is inter-
ested in segmentation, this kind of sparsity is detrimental
to the eventual results. Second, spatial relationships among
the different parts of an image are often critical in visual
recognition tasks. A scrambled collection of patches from
a car image does not necessarily evoke the recognition of
a car. The current bag of words representation ignores this
important issue, hence affecting the �nal accuracy of the
recognition tasks.

In this paper, we would like to inherit the strength of
the bag of words representation, and improve it by incor-
porating meaningful spatial coherency among the patches.
In traditional bag of words models, one word is assigned a
latent topic independently. This often results in segmenta-
tion results similar to that of Panel G in Fig.1. In contrast,
our model believes thatpixels should share the the same
latent topic assignment if they are in a neighboring region
with similar appearance. In other words, the latent topics
assignments of the pixels in an image are spatially coherent
in our model, whereas they are independent of each other in
the traditional bag of words model. Formally, we call our
model thespatially coherent latent topic model, or Spatial-
LTM for short.

A number of approaches recently have looked at the
issue of simultaneous classi�cation and segmentation. A
comparison of our work and the related works is given in
Table1. In this work, we would like to design a probabilistic
framework toward general object segmentation and classi�-
cation. Our model provides a way of unifying color/texture
features with visual words at a low computational cost. Fur-
thermore, Spatial-LTM is tolerant to shape deformation and
transformation without sacri�cing the computational ef�-
ciency to model the spatial freedom. In this way, we differ
from the shape based segmentation works in [4, 31, 16] and
classi�cation works in [1, 18, 17, 11, 5]. Our work is also
related to Russell et. al's recent work on object segmen-

tation [25]. Both works employ visual words for the task
of image segmentation. However, our Spatial-LTM model
is fundamentally a nested new representation of the images
and objects as oppose to the pLSA/LDA model in [25]. Our
model generates the topic distribution at the region level
instead of the word level as in [25]. Moreover, Our work
treats each image as one document, while [25] treats each
image segment as one separate document. This fundamen-
tal difference enables us to recognize and segment occluded
objects, whereas Russell et al. [25] cannot do so.

In summary, the contributions of Spatial-LTM are: (1)
Spatial-LTM provides a uni�ed representation for spatially
coherent bag of words topic models; (2) Spatial-LTM can
simultaneously segment and classify objects, even in the
case of occlusion and multiple instances; and (3) Spatial-
LTM can be trained either unsupervised or supervised, as
well as when partial object labels are provided. Fig.1 illus-
trates Spatial-LTM's novelty by comparing the segmenta-
tion and recognition results of an image by both the LDA
(one popular bag of words model) and Spatial-LTM.

The rest of the paper is organized as follows: Section2
introduces a nested representation of the images, which is
a region-based data structure for our model. In Section3,
we develop Spatial-LTM, a novel generative model of la-
tent topics and visual words and discuss the inference and
training of this model. Note that our model is �t for both
unsupervised learning and supervised learning. Section4
shows the experimental results of Spatial-LTM under these
two settings.

2. Image Representation for Spatial-LTM

Given an unknown and unlabeled image, Spatial-LTM
aims to simultaneously recognize categories of objects in
the scene as well as segment out the objects. To explicitly
model the spatially coherent nature of images, we enforce
the pixels to share the same latent topic within a homoge-
neous region. Here homogeneous region means that the pix-
els in the region are similar with respect to some appearance
feature, such as intensity, color, or texture. The visual words
in the region along with the region's overall appearance are
in turn discriminant for object recognition. In Section3 we
will show the detailed generative model that represents this
hierarchical relationship between patches and regions.

As a �rst step of our algorithm, one starts with an ini-
tial over-segmentation of an image by partitioning an im-
age into multiple homogeneous regions. Here we choose
to use a segmentation algorithm proposed by Felzenszwalb
and Huttenlocher [9], which incrementally merges regions
of similar appearance with small minimum spanning tree
weight. This method is of nearly linear computational com-
plexity in the number of neighboring pixels. In this paper
we use a modi�ed version of the algorithm in [9] to obtain
coherent regions of homogeneous appearance. It is worth
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Table 1. Comparison of other works that combine classi�cation and segmentation for object recognition.� Our model is �t for both unsupervised and
semi-supervised learning.

mentioning that our model is not tied to a speci�c segmen-
tation algorithm. Any method that could propose a reason-
able over-segmentation of the images would suit our needs.

We choose colors (inLab space) or texture features [26]
to describe the appearance of a region. To avoid obtaining
regions larger than the objects we want to classify, we start
with an over-segmentation of the images. This means we
let the algorithm partition an image into roughly30 � 50
homogeneous regions. When the segments number by the
original algorithm in [9] is too small (less than 30) on an
image, we constraint the algorithm by forbidding it to merge
regions larger than a threshold (we choose 3600 as threshold
for 400 � 300 images). On a computer with Intel 2.16G
CPU, the algorithm takes less than0:5 second to segment
one image of the size400� 300pixels. Fig.2 shows one
example of our modi�ed approach.

It is worth noting that our segmentation step serves a
fundamentally different role compared to the segmentation
in [25]. In [25], segments of the images are treated as sepa-
rate documents. Each segment is assumed to be a potential
object in its entirety. In our case, we use the over-segmented
pieces as building blocks for the hierarchical model. Our
representation allows further integration of these segments
such that our algorithm could recognize objects that are

Figure 2. Example image to illustrate regions of homogeneous
appearance. Left: original image. Center: segmentation bythe
original algorithm [9]. Right: segmentation by our modi�ed al-
gorithm. Over-segmentation of an image is desirable for Spatial-
LTM because regions can easily be merged into the same topic
during learning.

heavily occluded (see Section4). In addition, this way of
using the image segments makes our algorithm less vulnera-
ble to the quality of the segmentation step compared to [25].

After the over-segmentation step, we represent an im-
age in a region-based structure for the Spatial-LTM model.
The appearance feature of each region is characterized by
the average of color or texture features over all the pixels
within the region. Within each region, we �nd a number of
interest points by using the scale invariant saliency detec-
tor [15]. Each interest point is described by SIFT [23]. Two
codebooks are obtained for both the interest point patches
(or visual words) and the region appearance, with the size
W andA, respectively. This is done by using unsupervised
k-means clustering.

Fig. 3 shows the data structure that represents an image.
For an imageI d, we obtainRd regions. Each regionr has
one homogeneous appearance featurear , and a set of of
visual wordswi

r , where1 � i � M r . Notear andwi
r take

discrete values off 1; 2; :::; Ag andf 1; 2; :::; Wg according
to the respective codebook. We denote all the words within
the regionr as a vectorw r = f w1

r ; w2
r ; :::; wM r

r g.
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Figure 3. The region-based image representation for spatial-LTM.
The image is partitioned intoRd regions, each regionr has one
homogeneous appearance featurear , and a set of of visual words
wi

r , where1 � i � M r .



3. The Generative Model of Spatial-LTM

In this section, we introduce the Spatial-LTM model and
compare its difference with the traditional LDA model. We
will also discuss how to learn the parameters for Spatial-
LTM in section3.1. To make the presentation clearer, we
�rst consider Spatial-LTM in the unsupervised scenario and
then generalize it to the supervised version in section3.2.

Given an imageI d and its partitioned regionsr =
1; 2; :::; Rd, we uselatent topiczr to represent the labels
of regionr . Such label represents category identities of dif-
ferent objects, e.g., animals, grass, cars, background, and
etc. Suppose there areK topics within the image collection,
then for each region,zr = 1 ; 2; :::; K . For the segmentation
task, we need to infer latent topiczr for each region and
group all the regions with the samezr into one object. For
the classi�cation task, we choose the latent topic with the
highest probability as the category label of the image.

Our generative model behaves as following: �rst we
draw a distribution of topics for each imageI d, represented
by ��� d. As in [2], the prior distribution of��� d is described by
a Dirichlet distribution with parameter� . Given��� d, we se-
lect a topiczr for each region in the image. Given regionr
and its correspondingzr , we choose the overall appearance
of the region (either color or texture) according to a distri-
bution governed by��� . Finally, for each of theM r patches
within the regionr , we draw a visual codeword to represent
the patch according to the topic distribution��� . Fig.4(a) and
(b) compares the different graphical model representation
of LDA and Spatial-LTM for unsupervised learning.

The joint distribution off ar ; w r ; zr g given an imageI d

can be written as

P r(ar ; w r ; zr j�; �; � ) (1)

= P r(� d j� )P r (zr j� )P r (ar jzr ; � )
M rY

i =1

P r(wi
r jzr ; � )

where�; � are parameters describing the probability of gen-
erating appearance and visual words given the topic, respec-
tively. P r(zr j� ) is a Multinomial distribution andP r(� j� )
is aK -dimensional Dirichlet distribution.

Then the likelihood of a single image for Spatial-LTM is

L d = log
Z

d� d

R dY

r =1

Dir (� d j� )P r (ar ; w r j�; �; � d ) (2)

= log
Z

d� d

R dY

r =1

X

z r

Dir (� d j� )P r (ar ; w r ; zr j� d ; �; � )

In the training step, we maximize the total likelihood of
the training imagesL =

P D
d=1 L d subject to all the model

variables�; �; � andzr . In the testing step, the learned�; �
are �xed. We need only to estimate the parameter� d and

zr 's for each image. For the classi�cation task, a new image
is classi�ed as objectk � if

k � = arg max
1� k � K

� d(k) (3)

For the segmentation task, we label the regionr with z�
r

such that
z�

r = arg max
zr

P r(ar ; w r jzr ) (4)

The regions with the speci�cz�
r constitute the interested ob-

ject.
In practice it is intractable to maximizeL directly due to

the coupling between hidden variables�; �; � . To estimate
the parameters and hidden states, we employ variational in-
ference methods [14, 29] to maximize the lowerbound ofL .

To make the expression more compact, we employ the
notation as in [29]. We denote the visible nodes in Fig.4
(w; a) asV and the invisible nodes (z; �; �; � ) asH . To
approximate the true posterior distributionP(H jV ), we in-
troduce the variational distributionQ(H ). We obtain the
variational lowerbound for the likelihood

ln L =
X

H

Q(H ) ln
P r (H ; V )

Q(H )
+ KL (QjP )

�
X

H

Q(H ) ln
P r (H ; V )

Q(H )
= L Q (5)

whereKL (QjP) � 0 is the Kullback-Leibler divergence.
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Figure 4. Graphical model representation of Spatial-LTM and the
comparison with a traditional bag of words mode LDA. (a) La-
tent Dirichlet Allocation model (LDA). (b) Unsupervised Spatial-
LTM. (c) Supervised Spatial-LTM. The cyan and the red frames
denote groups of visual words and homogeneous regions, respec-
tively. The shaded circles stand for the observations from the im-
age, while the others are variables to be inferred.



Maximizing L is intractable, we therefore choose to
maximize L Q to approximately estimate the parameters.
In Section3.1 we introduce the framework of Winn and
Bishop's Variational Message Passing (VMP) for our varia-
tional estimation [29].

3.1. Model Inference using VMP

In this section we discuss how to maximize the varia-
tional lower boundL Q . Suppose we could factorize the
variational distribution in the following form:Q(H ) =Q

i Qi (H i ), in a conjugate-exponential model1, Winn and
Bishop shows that the variational estimation for each node
can be obtained by iteratively passing messages between
nodes in the network and updating posterior beliefs using
local operations [29].

Note the parents and children of nodei aspai andchi

respectively, we can obtain

ln Q�
i (H i ) = < ln P(H i jpai ) > � Q(H i ) + (6)

X

k2 ch i

< ln P(H k jpak ) > � Q(H i ) + const

which can be solved by passing variational message be-
tween neighboring nodes [29].

Following the VMP framework, we can obtain the varia-
tional estimation for nodezr as:

E [ln P r (zr = k)] = � k + ln P r (ar jzr ) +
X

i

ln P r (wi
r jzr ); (7)

To update node� , one can �t a Dirichlet distribution with
� by maximize likelihood estimation [21]. For other nodes,
the update equations are

E[ln � k ] = 	( 
 k ) � 	(
P K

k=1 
 k ) (8)

E [ln � ] = 	( � w ) � 	(
P W

w=1 � w ) (9)

E [ln � ] = 	( � a) � 	(
P A

a=1 � w ) (10)

where	 is a digamma function and


 k = � k +
P R d

r =1 � (zr ; k) (11)

� w =
P

zr
Num (wr ) + � � (12)

� a =
P

zr
Num (ar ) + � � (13)

Here we omit the details due to the space limit. The reader
may refer to [29] for detailed explanation.

3.2. Supervised Spatial-LTM

Till now we have been discussing how to learn the
Spatial-LTM without supervision. As most generative mod-
els, Spatial-LMT also enjoys the �exibility of handling both
labeled and unlabeled data.

1the distributions of variables conditioned on their parents are drawn
from the exponential family and are conjugate with respect to the distribu-
tion over these parent variables.

There are two possible ways of introducing user super-
vision. One way is to provide a category label for each
image. Such supervision information is important for an-
alyzing complex scenes [7]. For example, users can assign
a “beach” or “kitchen” category label to one image. In this
case, an additional categorical label is given to the entire
image (Fig.4(b)) as oppose to the object categorization case
where latent topics for each region represent the categorical
label (Fig.4(c)).

To incorporate this information of image categories, we
add a new nodec in the graphical model for each image.
Each possible value ofc corresponds to a distribution over
the topics� , which now becomes aC � K matrix. Each
row of this matrix denotes a Dirichlet distribution of� given
categoryc. Fig.4 (c) shows the graphical model representa-
tion of Spatial-LTM with category labels. To learn the su-
pervised Spatial-LTM, we can still use VMP for inference.
Most of the inferring steps are similar with its unsupervised
counterpart. Only the update equations for the� node are
slightly modi�ed.


 ck = � � (� )ck = � (c � c� )( � ck � 1) +
R dX

r =1

� (zr ; k) + 1 ; (14)

E [Q� ] = E [ln � ck j
 ] = 	( 
 ck ) � 	(
KX

k =1


 ck ) (15)

To estimate the class label of each image, we choose the
category label with the highest probability.

c� = arg max
c

Y

r 2 I d

P r (ar ; w r j� c ) (16)

Another way of introducing supervision is to provide
some of the topic labels and position of the objects. Given
the position of an object in one image, we can assign the ob-
ject label to the corresponding topiczr if region r belongs
to the given object. To learn the model with partially known
zr , we treat the nodes of the givenzr as visible nodes and
do not update the corresponding parameters.

4. Experimental Results

4.1. Unsupervised Spatial-LTM

We �rst apply the Spatial-LTM algorithm to automati-
cally extract horses and cows, using the Weizmann dataset
(327 horses, [4]) and the Microsoft object recognition
dataset (182 cows, [30]). Note that our method differs
from [16] and [4] since both of their methods require hu-
man labels of the training images. The only unsupervised
algorithm on horse databases is LOCUS [31]. LOCUS is a
shape-based method. It therefore requires all the horses in
the pictures to face the same direction. Spatial-LTM does
not need to make such assumptions. The Microsoft cow is a



Figure 5.Segmentation and classi�cation results of horses and cows.The
regions in red color are the segmentations of the animals. The regions of
other colors stand for three classes of backgrounds. The last row shows that
our method can �nd the object in inverted direction and undersigni�cant
occlusion.

more challenging dataset, where the animals face three dif-
ferent directions (left, right, front). In addition, some cow
pictures also contain multiple instances and signi�cant oc-
clusions.

We obtain an average segmentation accuracy of81:8%
on the horse dataset. This is measured by the percentage
of pixels in agreement with the ground truth segmentation.
We cannot measure quantitatively the segmentation results
for the cow images due to the lack of ground-truth of this
dataset. However, Fig.5 shows Spatial-LTM can success-
fully recognize the cows facing different directions and even
under signi�cant occlusions. Moreover, we test our algo-
rithm with images in which the horses are inverted or oc-
cluded by vertical bars (last row in Fig.5). Our results show
that our algorithm can handle such situations. LOCUS on
the other hand cannot recognize horses facing opposite di-
rections, or under such occlusions.

We next test the Spatial-LTM on the Caltech 5 dataset
(four objects and one background). Fig.6 gives examples of
unsupervised segmentation results. Spatial-LTM also clas-
si�es the images according to the object category they con-
tain. This is done by selecting the most probable latent topic

Figure 6.Segmentation and classi�cation results of the Caltech5 objects
database. The four foreground classes of objects (airplane,car brad, motor-
bike, and face) are shown in different color masks.
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Figure 7.Confusion matrix of classifying 13 classes of scene images.
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numbers stand for the percentage number.

inferred from the images as in Eq.(3). We compare the clas-
si�cation performance of Spatial-LTM and the pLSA model
used in [27]. Our performance is measured by the aver-
age of classi�cation precision for each class. The Spatial-
LTM model obtains a classi�cation precision of94:6%, bet-
ter than the results obtained by the pLSA algorithm (83%)
when performing the 5-way classi�cation. In addition, our
method is capable of segmenting out the objects from the
images whereas pLSA [27] cannot do so (see examples in
Fig.6).

4.2. Supervised Spatial-LTM

We illustrate the results of Spatial-LTM with supervised
learning in two different experiments. The �rst experiment
uses the scene dataset [7], which contains 13 classes of na-
ture scenes. For each category, we randomly select 100
images with their category labels for training the model in
Fig.4(b). For this data set we set the number of topics to60,
and the number of categories to13. In testing, we use the
trained model to concurrently classify and segment the im-
ages. Fig.7 shows the confusion table of the classi�cation



Figure 8.Segmentation results of the scene images[7]. The topics of
regions are represented by different colors, superimposedon the original
image.

result. Spatial-LTM obtains an overall classi�cation preci-
sion of66:4%, comparable with the results in [7] (65:2%).
We also conduct the segmentation for the scene images.
Note that this task is harder compared with segmentation
of the horses/cows database or Caltech5 database, since the
scene images are cluttered with different types of objects.
Fig. 7 shows some of the examples of the segmentation re-
sults.

As discussed in Section3.2, Spatial-LTM can also train
with partially labeled latent topics. In this experiment, we
select28 classes of objects among the subset of categories
that contain more than60 images from the Caltech101
dataset [8] to illustrate our results. These categories con-
tain objects with jagged boundaries (e.g. sun�ower), thin
regions (e.g. �amingo), or peripheral structures (e.g. cup).
For each class, we randomly select30 images for training
and30images for testing. In training, we use the knowledge
that the foreground object in each category has a known as-
signment (groundtruth mask annotated by human subjects).
We choose28topics for describing the object classes, and6
more topics for the background. Note that only the28fore-
ground topics are labeled during training. The6background
classes are left unlabeled. Given a new image, the most
probable latent topick is selected as the category label of
the object. The union of regions wherez�

r = k provide the
segmentation result of the object given by Eq.(4). It takes
less than 10 seconds to classify and segment a new image,
including computing the local descriptors and preparing the
region-based over-segmentation.

To the best of our knowledge, we are the �rst one to
provide both the segmentation and classi�cation results on
nearly 30 classes of objects. Fig.9 and Fig.10 show the
confusion table of the classi�cation and the segmentation
accuracy, respectively. The extensive segmentation results
in Fig. 11and Fig.12validates the success of our method.
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Figure 9.Confusion matrix for the classi�cation of 28 classes from the
Caltech101 database [8]. Each row denotes ground-true label of the object
class. And each column denotes class label predicted by the model. All
the numbers stand for the percentage number. The overall classi�cation
precision is obtained by average the diagonal entries of theconfusion table.

Figure 10.Segmentation accuracy of for the 28 classes from the Cal-
tech101 database [8]. The horizontal axis shows the abbreviated names of
each class and the vertical axis represents the segmentation accuracy. The
thick bars stand for the average accuracy for each class, andthe thin bars
are the standard deviation of the accuracy within each class.

5. Conclusion

In this paper, we propose a novel model Spatial-LTM
for object segmentation and classi�cation. Our model aims
to close the gap between bag of words models and image
analysis. By considering neighboring appearance of local
descriptors, Spatial-LTM exceeds the bag of words model
with satisfactory segmentation ability as well as better clas-
si�cation performance.
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Figure 11.Examples of the object segmentation results for some of the 28 classes from the Caltech101 database [8]. Note our method can also provide
the class label of the segmented object. For each triplet of the examples, we �rst show the original testing image. The middle image shows the foreground
object in white color and the background topics in black. Andthe last image shows the segmented object free of background.

Figure 12.More segmentation results for some of the Caltech101 objectclasses.
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