Toward richer targets in large-scale recognition

Alex Berg

Computer Science Department
Stony Brook University
Co-authors so far

Long Term Collaborators

Tamara Berg’s lab
Stony Brook University

Fei-Fei Li’s lab

Stanford University

Please see my papers for (many!) references.
What to recognize?

“Happy shaggy Airedale poses in the autumn forest.”

Increasing structural complexity

Single label

Multiple labels

Localization

Description
Where are we?
(for large-scale recognition)

Need:
Data, Labels, Models, Algorithms
+ Computation!

"Happy shaggy Airedale poses in the autumn forest."

Single label
Multiple labels
Localization
Description

Increasing structural complexity

Dog
Dog, Tree, Fence, Leaf
Label space?

20,000 categories (noun synsets) from WordNet

Multiple labels

Localization

Description

“Happy shaggy Airedale poses in the autumn forest.”

14,197,122 labeled images in 21841 categories
Step 1: Collect Images from the Internet

- Send queries to image search engines
 - Use query expansion to increase # retrievable images

Google Image Search

80,000,000 Tiny Images 2007
Torralba, Fergus, Freeman

ImageNet 2009
Deng, Dong, Socher, Li, Li, Fei-Fei
Step 2: Verify the images

- Ask (pay!) people to verify presence of objects in images
* synset name (# of synsets in the sub tree, average # of images per synset)
Label space?

14,197,122 labeled images in 21841 categories

- Dog, Tree, Fence, Leaf
- Localization
- Description

"Happy shaggy airedale poses in the autumn forest."
Label space?

Used for ranking & retrieval experiments

Bengio et al

1 million+ query terms in Google image search

Dog

Multiple labels

Localization

“Happy shaggy airedale poses in the autumn forest.”

Description

Dog, Tree, Fence, Leaf

http://www.flickr.com/photos/sgcallawayimages/3306849049/
Label space?

"Happy shaggy airedale poses in the autumn forest."

http://www.flickr.com/photos/sgcallawayimages/3306849049/
But most work uses a small number of target categories, e.g. 20 from Pascal VOC, or 100s for image parsing.
ImageNet Large scale visual recognition challenge (LSVRC)

Motivation:
- Applications with millions to billions of images
- Hundreds of thousands of possible labels
- Recognition for indexing and retrieval
- Complement current Pascal VOC (20 categories)

Currently 1000 categories in the challenge, but only one class of object labeled per image.

People
- Alex Berg -- Stony Brook
- Jia Deng -- Stanford
- Sanjeev Satheesh -- Stanford
- Hao Su -- Stanford
- Fei-Fei Li -- Stanford
Label space?

But again, work on using computer vision for this uses no more than 100s of labels.*

"Happy shaggy airedale poses in the autumn forest."
Information to index images for:
- Text based retrieval
- Image based retrieval
- Visual mining
- Visual discovery

"Happy shaggy airedale poses in the autumn forest."

Multiple labels
Localization
Description

Single label

Why?

Estimating content
Why do we want a large-scale label space?
Where is the magic?
Where is the magic?
Where is the magic?

~9 Million Images in ~10,000 categories from ImageNet
Studying large scale classification

What does classifying more than 10,000 image categories tell us?
ECCV 2010
Deng, Berg, Li, Fei-Fei
Similar image retrieval

Query

Retrieved Images

Retrieved Images
What do we mean by similarity?

Query

Images

Airship
Blimp

Aquatic Animal
Axlotl

Retrieved Images

Airship
Balloon

Retrieved Images
Similarity functions

\[s_i = \text{semantic (features (} I_i \text{))} \]

\[\text{Sim} \left(I_1, I_2 \right) = s_1^T I s_2 \]

\[\text{Sim} \left(I_1, I_2 \right) = s_1^T H s_2 \]

\[\text{Sim} \left(I_1, I_2 \right) = \text{Sim} (\text{semantic (features (} I_1 \text{))}, \text{semantic (features (} I_2 \text{)))} \]

\[\text{Sim} \left(I_1, I_2 \right) = f_1^T M f_2 \]

Scale of the label space matters here!

Hierarchical Semantic Indexing, CVPR 2010, Deng, Berg, Fei-Fei
Similar image retrieval
small # of classes

[Graph showing precision vs. k for different methods: Ours, OASIS, MCML, LEGO, LMNN, Euclidean.]

Caltech 256 Data
20 classes
1,000d features

OASIS
NIPS 2009, JMLR 2010
Chechik, Shalit, Bengio, Sonnenburg,
Franc, Yom-tov, Sebag

Hierarchical Semantic Indexing
CVPR 2010
Deng, Berg, Fei-Fei
Similar image retrieval
large # of classes

ImageNet Data
1000 classes
21,000d features

Simple comparison vector of estimates for each label

A significant improvement…

OASIS Learn comparison function on low-level features

Random is 0.001
Similar approach for face similarity

Images

Low-level features
- RGB
- HOG
- LBP
- SIFT
- ...

Attributes
- Male
- Asian
- Dark hair
- Round jaw
- ...

Verification
- Different

Attribute and Simile Classifiers for Face Verification
ICCV 2009, PAMI 2011
Kumar, Berg, Belhumeur, Nayar
Similar approach for face similarity

Images

Low-level features

- RGB
- HOG
- LBP
- SIFT
- ...

Attributes

- Male
- Asian
- Dark
- Hair
- Round
- Jaw

Verification

Different

RGB
HOG
LBP
SIFT
...

Attribute and Simile Classifiers for Face Verification
ICCV 2009, PAMI 2011
Kumar, Berg, Belhumeur, Nayar
Large scale allows us to use structure over labels!

Multi-level categorization

Recognizing new things
Where is the magic?
How can we do this well?

“Hedging your bets” Deng, Krause, Berg, Fei-Fei, CVPR2012
Formulation

Semantic hierarchy
- entity
 - mammal
 - kangaroo
 - zebra
 - vehicle
 - car
 - boat

Accuracy
- entity
 - mammal
 - 1
 - vehicle
 - 0

Reward
- entity
 - mammal
 - 1
 - vehicle
 - 0

Reward: amount of correct information gain (i.e. decrease of uncertainty)

Deng, Krause, Berg, Fei-Fei, CVPR2012
Formulation

Semantic hierarchy
- entity
 - mammal
 - kangaroo
 - zebra
 - vehicle
 - car
 - boat

Accuracy
- entity
 - mammal
 - 1
 - vehicle
 - 0

Reward
- entity
 - mammal
 - 1
 - vehicle
 - 0

Training images

Maximize over f, $R(f, r)$
Subject to $\Phi(f) \geq 1 - \epsilon$

Accuracy of classifier

Accuracy guarantee

Reward of classifier

Rewards on nodes

Deng, Krause, Berg, Fei-Fei, CVPR2012
For now, assume no accuracy guarantee.

Maximize over f, $R(f, r^*)$
Subject to $\Phi(f) \geq 1 - \epsilon$

Deng, Krause, Berg, Fei-Fei, CVPR2012
What about the accuracy guarantee $1 - \epsilon$?

![Diagram showing a classification process involving a classifier g on leaves, posterior for leaf nodes, posterior for all nodes, expected rewards, and training images associated with rewards and accuracy.]

Maximize over f, $R(f, r)$

Subject to $\Phi(f) \geq 1 - \epsilon$

Accuracy of classifier

Accuracy guarantee

Deng, Krause, Berg, Fei-Fei, CVPR2012
What about the accuracy guarantee $1 - \epsilon$?

Maximize over f, $R(f, r)$
Subject to $\Phi(f) \geq 1 - \epsilon$

Deng, Krause, Berg, Fei-Fei, CVPR2012
The optimal λ^\dagger is where the accuracy is exactly $1-\epsilon$: binary search.

Deng, Krause, Berg, Fei-Fei, CVPR2012
The DARTS algorithm

Dual Accuracy Reward Trade-off Search

- Train a flat classifier that gives probability estimates on the leaf nodes.
- \(f_\lambda \leftarrow \) a classifier that maximizes the expected *new node rewards* \((r + \lambda) \)
- Binary search to find the optimal \(f_\lambda \) such that \(f_\lambda \) is \(1-\epsilon \) accurate

\(\lambda \) is the dual variable in the Lagrange function

Theorem: for any \(1-\epsilon \), DARTS converges to an optimal solution except for artificial cases (no worries in practice).

Training images

Deng, Krause, Berg, Fei-Fei, CVPR2012
Results
Recognition Pipeline

Extracting Local descriptors (SIFT) → Coding (LLC) → Spatial pooling → Classification → Flat → DARTS Ours

hyena

red fox

canine
Recognition Pipeline

Black Box

Flat

Max class

hyena

canine

Classification

DARTS Ours

DARTS
red fox

Flat

95% Accuracy Guarantee

hyena

Canine

Deng, Krause, Berg, Fei-Fei, CVPR2012
Some more examples: flat classifier vs. ours

- red fox
 - Flat: hyena, canine
 - Ours: Egyptian cat, carnivore
- trimaran
 - Flat: catamaran, submarine, airship, iron, electric guitar
 - Ours: sailboat, watercraft, craft, artifact, artifact

Deng, Krause, Berg, Fei-Fei, CVPR2012
Results

Datasets: 10,000 image classes from ImageNet (~9 million images)
Baselines: Flat classifier with a reject option, etc.

10K classes: **90%** accurate, **19%** on leaf nodes, **64%** non-root internal nodes, **17%** “entity”

Deng, Krause, Berg, Fei-Fei, CVPR2012
Let’s get extreme…

<table>
<thead>
<tr>
<th>Flat</th>
<th>bobsled</th>
<th>pheasant</th>
<th>mortar</th>
<th>canoe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td>vehicle</td>
<td>animal</td>
<td>edible fruit</td>
<td>watercraft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flat</th>
<th>loggerhead</th>
<th>cannon</th>
<th>Bouvier des Flandres</th>
<th>grapefruit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td>animal</td>
<td>animal</td>
<td>living thing</td>
<td>citrus fruit</td>
</tr>
</tbody>
</table>

Deng, Krause, Berg, Fei-Fei, CVPR2012
Detection with many categories?
Use “hedging” approach for each bounding box

- Hypothesize bounding boxes
- Evaluate hedging system for each bbox
- Output unique labels
 e.g. from segmentation or saliency operators
Example detections and classification from “Hedging” system tuned to 70% expected accuracy on ImageNet data

Output

Highest scoring bb

NOT ImageNet data!
Google similar images baseline

Image size:
1944 × 2592

No other sizes of this image found.

Visually similar images - Report images
Example detections and classification from “Hedging” system tuned on ImageNet data to 70% expected accuracy

All google image search results for “Puma”
Using Large-Scale Structured Label Spaces

Hierarchical Semantic Indexing
CVPR 2010
Deng, Berg, Fei-Fei
Using Large-Scale Structured Label Spaces

First 10,000 class object detection

Hedging your bets
CVPR 2012
Deng, Krause, Berg, Fei-Fei
Using Large-Scale Structured Label Spaces

The old castle’s tower was crumbling

New white paint on the bell tower

The view downtown toward the BCA tower.

Train a linear model to recognize images with “Tower” in their caption, using the 8k classifier outputs as features

Look at the learned weights…

WORK IN PROGRESS
Contact Alex Berg
Meaning from large-scale computer vision

Weights learned to recognize images with “Tower” in caption

Top weighted classifier outputs

- campanile, belfry (0.165488)
- skyscraper (0.145514)
- church tower (0.119316)
- high-rise, tower block (0.118820)
- battlement, crenelation, crenellation (0.108992)
- alcazar (0.108717)
- control tower (0.106499)

Weights learned over outputs of ~8k classifiers
Meaning from large-scale computer vision

Weights learned to recognize images with “Tree” in caption

Top weighted classifier outputs

Brazilian rosewood, caviuna wood, jacaranda, Dalbergia nigra (0.059477)
redbud, Cercis canadensis (0.055979)
bristlecone pine, Rocky Mountain bristlecone pine, Pinus aristata (0.039609)
mangrove, Rhizophora mangle (0.035757)
frogmouth (0.035104)
bracket fungus, shelf fungus (0.033507)
branded owl, Strix varia (0.032505)
Japanese apricot, mei, Prunus mume (0.031360)
snag (0.031075)

Weights learned over outputs of ~8k classifiers

Work in progress, contact Alex Berg
Label space?

But again, work on using computer vision for this uses no more than 100s of labels.*
Composing captions

guessing game

a) monkey playing in the tree canopy, Monte Verde in the rain forest

b) capuchin monkey in front of my window

c) monkey spotted in Apenheul Netherlands under the tree

d) a white-faced or capuchin in the tree in the garden

e) the monkey sitting in a tree, posing for his picture
Composing captions

guessing game

a) monkey playing in the tree canopy, Monte Verde in the rain forest

b) capuchin monkey in front of my window

c) monkey spotted in Apenheul Netherlands under the tree

d) a white-faced or capuchin in the tree in the garden

e) the monkey sitting in a tree, posing for his picture
Collective Phrase Fusion for Natural Image Descriptions

Kuznestova et al ACL 2012
With Tamara Berg’s lab at Stony Brook

Example Composed Description:
the dirty sheep meandered along a desolate road in the highlands of Scotland through frozen grass
SBU Captioned Photo Dataset

The Egyptian cat statue by the floor clock and perpetual motion machine in the pantheon.

Interior design of modern white and brown living room furniture against white wall with a lamp hanging.

Man sits in a rusted car buried in the sand on Waitarere beach.

Little girl and her dog in northern Thailand. They both seemed interested in what we were doing.

Emma in her hat looking super cute.

Our dog Zoe in her bed.

http://tamaraberg.com/sbucaptions
Retrieving noun phrases from similar object detections

Find matching fruit detections by **visual** similarity

Detect: fruit

- oranges in blue bowl
- mandarin oranges in wooden bowl
- oranges fresh off the tree in an orange grove in a farm outside rehovot
- An orange tree in the backyard of the house.
Detect: dog

Find matching dog detections by visual similarity

- Peruvian dog sleeping on city street in the city of Cusco, (Peru)
- Contented dog just laying on the edge of the road in front of a house.
- Closeup of my dog sleeping under my desk.
- this dog was laying in the middle of the road on a back street in jaco

Retrieving verb phrases from similar object detections
Retrieve prepositional phrases from region + detection matches

Find matching region detections using appearance + arrangement

Object: car

Comfy chair under a tree.

Cordoba - lonely elephant under an orange tree...

I positioned the chairs around the lemon tree -- it's like a shrine

Mini Nike soccer ball all alone in the grass
Retrieving prepositional phrases from scene matches

Extract scene descriptor

Find matching images by scene similarity

Pedestrian street in the Old Lyon with stairs to climb up the hill of fourviere

I'm about to blow the building across the street over with my massive lung power.

View from our B&B in this photo

Only in Paris will you find a bottle of wine on a table outside a bookstore
Composing Descriptions

Compose descriptions from phrases with ILP approach

• Vision constraints
 – Include visual detection/classification scores for phrase selection

• Linguistic constraints
 – Allow only one phrase of each type
 – Enforce plural/singular agreement between NP and VP

• Discourse constraints
 – Prevent inclusion of repeated phrasing

• Phrase cohesion constraints
 – n-gram statistics between phrases
 – Co-occurrence statistics between head words of phrases (last word or main verb) to encourage longer range cohesion
Bad Results

Grammar Problems
- *Found* MIT boy *gave* me this quizical expression.
- One of the *most shirt* in the wall of the house.

Cognitive Absurdity
- Here you can see *a cross by the frog in the sky*.

Content Irrelevance
- Here you can see *a bright red flower* taken near our apartment in Torremolinos the Costa Del Sol.
- This is *a shoulder bag* with a blended rainbow effect.
Visual Turing Test

Proposed approach vs Original Human Written Caption

ILP: This is a photo of this bird hopping around eating things off of the ground by the river.

Human: IMG_6892 Lookn up in the sky its a bird its a plane its ah..... you

ILP: Taken in front of my cat sitting in a shoe box. Cat likes hanging around in my recliner.

Human: H happily rests his armpit on a warm Gatorade bottle of water (a small bottle wrapped in a rag)

ILP: This is a sporty little red convertible made for a great day in Key West FL. This car was in the 4th parade of the apartment buildings.

Human: Hard rock casino exotic car show in June

ILP: I like the way the clouds hanging down by the ground in Dupnitsa of Avikwalal.

Human: Car was raised on the wall over a bridge facing traffic..paramedics were attending the driver on the ground
So far – all about using the output of classifiers...

- Avoid wasting the **CPU millennia** invested.
- What about training the classifiers themselves?
- Structure between classes -> structure in learning
Scalability of computation

Multiclass classification
A function H_c is learned for each class c. Then at test time, an item x is classified as class $\text{argmax}_c H_c(x)$.

One-vs-all training constrains $H_c(x) > H_c(z)$, single-machine training constrains $H_c(x) > H_d(x)$, for any item x of class c, and item z of class d, $d \neq c$.

- State of the art for large scale classification / detection
- We cannot afford this for large label spaces
- Our recent results indicate it is already undesirable computationally

LIBLINEAR’s binary solver (dual coordinate descent)
Cramer & Singer (LIBLINEAR’s multi-class)

Basically structured prediction across classes
DCMSVM: Distributed Parallel Training For Single-Machine Multiclass Classifiers

Our parallel single machine method on 16 computers

Single machine method on one computer

One vs rest on 16 computers

100 Class Problem

1000 Class Problem
Summary

• We are moving past image categorization
• Toward detection, parsing, attributes, & description
• Large structured label spaces are useful
 – Don’t start over from scratch every time!
• We will never have fully labeled data
• Significant computational bottlenecks in training

Long Term Collaborators

Tamara Berg’s lab
Stony Brook University

Fei-Fei Li’s lab
Stanford University

Please see my papers for (many!) references.