Recent Advances in Learning SPARSE Structured I/O Models: models, algorithms, and applications

Eric Xing
epxing@cs.cmu.edu
Machine Learning Dept./Language Technology Inst./Computer Science Dept.
Carnegie Mellon University

Structured Prediction Problem

- Unstructured prediction
\[x = (x_{11}, x_{12}, \ldots) \quad y = y_i \]

- Structured prediction
 - Part of speech tagging
 \[x = \text{"Do you want sugar in it?"} \quad y = \text{<verb pron verb noun prep pron>} \]
 - Image segmentation
\[x = \begin{pmatrix} x_{11} & x_{12} & \ldots \\ x_{21} & x_{22} & \ldots \\ \vdots & \vdots & \vdots \end{pmatrix} \quad y = \begin{pmatrix} y_{11} & y_{12} & \ldots \\ y_{21} & y_{22} & \ldots \\ \vdots & \vdots & \vdots \end{pmatrix} \]
Laplace Max-margin Markov Networks

Classical Predictive Models

- Inputs:
 - a set of training samples \(\mathcal{D} = \{(x^i, y^i)\}_{i=1}^N \), where \(x^i = [x_1^i, x_2^i, \cdots, x_L^i]^{T} \) and \(y^i \in C \triangleq \{c_1, c_2, \cdots, c_L\} \)
- Outputs:
 - a predictive function \(h(x) : y^* = h(x) \triangleq \arg \max_y F(x, y; \mathbf{w}) \)
- Examples: \(F(x, y; \mathbf{w}) = g(\mathbf{w}^T f(x, y)) \)

Advantages:
1. Full probabilistic semantics
2. Straightforward Bayesian or direct regularization
3. Hidden structures or generative hierarchy

- Logistic Regression, Bayes classifiers
 - Max-likelihood estimation

 \[\max_{\mathbf{w}} \mathcal{L}(\mathcal{D}; \mathbf{w}) = \sum_{i=1}^N \log p(y^i|x^i) \]
 \[p(y|x) = \frac{\exp\{\mathbf{w}^T f(x, y)\}}{\sum_{y'} \exp\{\mathbf{w}^T f(x, y')\}} \]

- Support Vector Machines (SVM)
 - Max-margin learning

 \[\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N \xi_i; \]
 \[\text{s.t. } \mathbf{w}^T \Delta f_i(y) \geq 1 - \xi_i, \forall i, \forall y \neq y^i. \]

Advantages:
1. Dual sparsity: few support vectors
2. Kernel tricks
3. Strong empirical results

Structured Prediction Models

- Conditional Random Fields (CRFs) (Lafferty et al 2001)
 - Based on Logistic Regression
 - Max-likelihood estimation (point-estimate)

 \[\max_{\mathbf{w}} \mathcal{L}(\mathcal{D}; \mathbf{w}) = \sum_{i=1}^N \log p(y|x^i) \]
 \[p(y|x) = \frac{\exp\{\mathbf{w}^T f(x, y)\}}{\sum_{y'} \exp\{\mathbf{w}^T f(x, y')\}} \]

- Max-margin Markov Networks (M^3Ns) (Taskar et al 2003)
 - Based on SVM
 - Max-margin learning (point-estimate)

 \[\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N \xi_i; \]
 \[\text{s.t. } \forall i, \forall y \neq y^i : \mathbf{w}^T \Delta f_i(y) \geq \Delta f_i(y^i) - \xi_i, \xi_i \geq 0, \]

where \(\mathbf{w}^T \Delta f_i(y|x_i) \) denotes the margin and \(\Delta f_i(y) \) is a loss function.

Challenges:
- **SPARSE** prediction model
- Prior information of structures
- Scalable to large-scale problems (e.g., \(10^4 \) input/output dimension)

ACGTTTTACTGTACAATT

VLPR 2009 @ Beijing, China
Outline

- Structured sparse regression
 - Graph-guided fused lasso: unlinked SNPs to trait networks (Kim and Xing, PLoS Genetics)

- Maximum entropy discrimination Markov networks
 - General Theorems (Zhu and Xing, JMLR submitted)
 - Gaussian MEDN: reduction to M^3N (Zhu, Xing and Zhang, ICML 08)
 - Laplace MEDN: a sparse M^3N (Zhu, Xing and Zhang, ICML 08)
 - Partially observed MEDN: (Zhu, Xing and Zhang, NIPS 08)
 - Max-margin/Max entropy topic model: (Zhu, Ahmed, and Xing, ICML 09)

Max-Margin Learning Paradigms
Primal and Dual Problems of M^3Ns

- **Primal problem:**
 \[P_0 (M^3N) : \min_w \frac{1}{2} \|w\|^2 + C \sum_{i=1}^N \xi_i \]
 such that, \(\forall i, \forall y \neq y^i : w^\top \Delta f_i(y) \geq \Delta f_i(y)^i - \xi_i \)
 \(\xi_i \geq 0 \)

- **Algorithms**
 - Cutting plane
 - Sub-gradient
 - ...

- **Dual problem:**
 \[D_0 (M^3N) : \max_\alpha \sum_{i,y} \alpha_i(y) \Delta f_i(y) - \frac{1}{2} y^\top \eta \]
 such that, \(\forall i, \forall y : \sum_{i,y} \alpha_i(y) = C; \ \alpha_i(y) \geq 0 \)
 where \(\eta = \sum_{i,y} \alpha_i(y) \Delta f_i(y) \)

- **Algorithms:**
 - SMO
 - Exponentiated gradient
 - ...

\[w^* = \eta^* = \sum_{i,y} \alpha^*_i(y) \Delta f_i(y). \]

- So, M^3N is dual sparse!

MLE versus max-margin learning

- **Likelihood-based estimation**
 - Probabilistic (joint/conditional likelihood model)
 - Easy to perform Bayesian learning, and incorporate prior knowledge, latent structures, missing data
 - Bayesian regularization!!

- **Max-margin learning**
 - Non-probabilistic (concentrate on input-output mapping)
 - Not obvious how to perform Bayesian learning or consider prior, and missing data
 - Sound theoretical guarantee with limited samples

- **Maximum Entropy Discrimination (MED)** (Jaakkola, et al., 1999)
 - Model averaging
 - The optimization problem (binary classification)
 \[\min_{\theta} \frac{1}{n} \sum_{i=1}^n KL(p(\theta) || p_i(\theta)) \]
 \[\text{MED subsumes SVM.} \]

\[\hat{g} = \text{sign} \int p(w) F(x; w) dw \quad (y \in \{+1, -1\}) \]

where Θ is the parameter w when ξ are kept fixed or the pair (w, ξ) when we want to optimize over ξ.
MaxEnt Discrimination Markov Network

- **Structured MaxEnt Discrimination (SMED):**

\[
P_1 : \min_{p(w), \xi} \text{KL}(p(w) || p_0(w)) + U(\xi)
\]

\[\text{s.t. } p(w) \in \mathcal{F}_1, \xi_i \geq 0, \forall i.\]

\text{generalized maximum entropy or regularized KL-divergence}

- **Feasible subspace of weight distribution:**

\[
\mathcal{F}_1 = \{p(w) : \int p(w) (\Delta F_i(y; w) - \Delta F_i(y')) dw \geq -\xi_i, \forall y \neq y', \text{ expected margin constraints.}\}
\]

- **Average from distribution of M3Ns**

\[
h_1(x; p(w)) = \arg \max_{y \in \mathcal{Y}(x)} \int p(w) F(x, y; w) dw
\]

Solution to MaxEnDNet

- **Theorem 1:**

 - Posterior Distribution:

\[
p(w) = \frac{1}{Z(\alpha)} p_0(w) \exp \left\{ \sum_{i,y} \alpha_i(y) [\Delta E_i(y; w) - \Delta E_i(y)] \right\}
\]

 - Dual Optimization Problem:

\[
D_1 : \max_{\alpha} - \log Z(\alpha) - U^*(\alpha)
\]

\[\text{s.t. } \alpha_i(y) > 0, \forall y, \forall \alpha.\]

\[U^*(\cdot) \text{ is the conjugate of the } U(\cdot), \text{ i.e., } U^*(\alpha) = \sup_{\xi} \left(\sum_{i,y} \alpha_i(y) \xi_i - U(\xi) \right)\]
Gaussian MaxEnDNet (reduction to M\(^3\)N)

- **Theorem 2**
 - Assume \(F(x, y; w) = \mathbf{w}^T \Phi(x, y), U(\xi) = C \sum \xi_i \) and \(p_0(w) = \mathcal{N}(w|0, I) \)
 - Posterior distribution: \(p(w) = \mathcal{N}(w|\mu_w, \Sigma) \)
 - Dual optimization:
 \[
 \max_{\alpha} \sum_{y \in Y} \alpha(y) \Delta w(y) - \frac{1}{2} \sum_{y \in Y} \alpha(y) \Delta L(y)|\|^2 \\
 \text{s.t.} \sum_{y \in Y} \alpha(y) = C, \alpha(y) \geq 0, \forall y
 \]
 - Predictive rule:
 \[
 h_\ell(x) = \arg \max_{y \in Y(x)} \int p(w) F(x, y; w) dw = \arg \max_{y \in Y(x)} \mu_w \Phi(x, y)
 \]

- Thus, MaxEnDNet subsumes M\(^3\)Ns and admits all the merits of max-margin learning
- Furthermore, MaxEnDNet has at least three advantages ...

Three Advantages

- An averaging Model: PAC-Bayesian prediction error guarantee
 \[
 Pr_Q(M(h(x, y)) \leq \epsilon) \leq Pr_P(M(h(x, y)) \leq \epsilon) + O\left(\frac{K e^{-2KL(p_{\|\alpha}\|N(0, I))} + \ln N + K \delta^{-1}}{N} \right).
 \]
- Entropy regularization: Introducing useful biases
 - Standard Normal prior \(\Rightarrow \) reduction to standard M\(^3\)N (we’ve seen it)
 - Laplace prior \(\Rightarrow \) Posterior shrinkage effects (sparse M\(^3\)N)
 \[
 \forall k, \langle \eta_k \rangle_p = \frac{2\nu_k}{\lambda - \eta_k^2}
 \]
- Integrating Generative and Discriminative principles
 - Incorporate latent variables and structures (PoMEN)
 - Semisupervised learning (with partially labeled data)
I: Generalization Guarantee

- MaxEntNet is an averaging model

- Theorem 3 (PAC-Bayes Bound)

 Let p_0 be any continuous probability distribution over \mathcal{H} and $\delta \in (0, 1]$. Let $\forall F \in \mathcal{H} : X \times Y \mapsto [-c, c]$

 Then with probability at least $1 - \delta$ over random samples \mathcal{D} of Q, for every distribution p over \mathcal{H} and for all margin thresholds $\gamma > 0$

 \[
 \Pr_Q(M(h, x, y) \leq 0) \leq \Pr_p(M(h, x, y) \leq \gamma) + O\left(\frac{\gamma^2 KL(p || p_0) \ln(N) \gamma}{N} + \ln N + \ln \frac{1}{\delta}\right),
 \]

 where $\Pr_Q(\cdot)$ and $\Pr_p(\cdot)$ represent the probability of event under dist. Q and D, respectively.

II: Laplace MaxEnDNet (primal sparse M3N)

- Laplace Prior:

 \[
 p_0(w) = \prod_{k=1}^{K} \frac{\sqrt{\lambda}}{2} e^{-\sqrt{\lambda} |w_k|} = \left(\frac{\sqrt{\lambda}}{2}\right)^K e^{-\sqrt{\lambda} \|w\|_1}
 \]

- Corollary 4:

 - Under a Laplace MaxEnDNet, the posterior mean of parameter vector w is:

 \[
 \forall k, \quad \langle w_k \rangle_p = \frac{2\eta_k}{\lambda - \eta_k^2}
 \]

 where the vector η is a linear combination of "support vectors":

 \[
 \eta = \sum_{i} \alpha_i(y) \Delta_i(y)
 \]

 - The Gaussian MaxEnDNet and the regular M^3N has no such shrinkage

 - there, we have

 \[
 \langle w \rangle_p = \eta \iff \forall k, \quad \langle w_k \rangle_p = \eta_k
 \]
Laplace Max-margin Markov Networks

LapMEDN vs. L₂ and L₁ regularization

- Corollary 5: LapMEDN corresponding to solving the following primal optimization problem:

\[
\min_{\mu, \xi} \sqrt{\lambda} \sum_{k=1}^{K} \left(\sqrt{p_k^2 + \frac{1}{\lambda}} - \frac{1}{\sqrt{\lambda}} \log \frac{\sqrt{\lambda} p_k^2 + 1 + 1}{2} \right) + C \sum_{i=1}^{N} \xi_i
\]

s.t. \(\mu^T \Delta f_i(y) \geq \Delta f_i(y) - \xi_i; \ \xi_i \geq 0, \ \forall i, \ \forall y \neq y_i \).

- KL norm: \(\|p\|_{KL} = \sum_{i=1}^{K} \left(\sqrt{p_k^2 + \frac{1}{\lambda}} - \frac{1}{\sqrt{\lambda}} \log \frac{\sqrt{\lambda} p_k^2 + 1 + 1}{2} \right) \)

Variational Learning of LapMEDN

- Exact dual function is hard to optimize

\[
\max_{\alpha} L - \sum_{k=1}^{K} \log \frac{\lambda}{\eta_k}
\]

- Use the hierarchical representation, we get:

\[
KL(p||p_0) = -H(p) - (\log \int p(w|\tau)p(\tau|\lambda) d\tau)_p
\]

\[
\leq -H(p) - (\int q(\tau) \log \frac{p(w|\tau)p(\tau|\lambda)}{q(\tau)} d\tau)_p \triangleq \mathcal{L}(p(w), q(\tau))
\]

- We optimize an upper bound:

\[
\min_{p(w) \in \mathcal{F}(q(\tau))} \mathcal{L}(p(w), q(\tau)) + U(\xi)
\]

- Why is it easier?
 - Alternating minimization leads to nicer optimization problems

Keep \(q(\tau) \) fixed

Keep \(p(w) \) fixed

The effective prior is normal

Closed form solution of \(q(\tau) \) and its expectation

\[
\forall k: \ p_0(w_k | \tau_k) = \mathcal{N}(w_k | \mathcal{N}(0, 1), \frac{1}{\tau_k} q(\tau))
\]

\[
\mathbb{E}[q(\tau)|p] = \frac{1}{\tau_k} \mathbb{E}[\sqrt{\frac{1}{\lambda} \log \frac{\sqrt{\lambda} p_k^2 + 1 + 1}{2}} | p]
\]
Experimental results on OCR datasets
(CRFs, L_1 - CRFs, L_2 - CRFs, M^3Ns, L_1 - M^3Ns, and LapMEDN)

- We randomly construct OCR100, OCR150, OCR200, and OCR250 for 10 fold CV.

Feature Selection
Sensitivity to Regularization Constants

- L_1-CRFs are much sensitive to regularization constants; the others are more stable
- LapM3N is the most stable one

III: Latent Hierarchical MaxEnDNet

- Web data extraction
 - Goal: Name, Image, Price, Description, etc.

 - Hierarchical labeling
 - Advantages:
 - Computational efficiency
 - Long range dependency
 - Joint extraction

Given Data Record
Partially Observed MaxEnDNet (PoMEN)

- Now we are given partially labeled data: \(D = \{ < x^i, y^i, z^i > \}_{i=1}^{N} \)

 - PoMEN: learning \(p(w, z) \)

 \[
 \text{P2(PoMEN)}: \min_{p(w,z) \in \mathcal{F}_2} \frac{1}{\xi_i} KL(p(w,z)||p_0(w(z))) + U(\xi)
 \]

 \[
 \mathcal{F}_2 = \{ p(w,z) : \sum \int p(w,z) |\Delta F_i(y;x,w) - \Delta F_i(y) || dw \geq -\xi_i, \forall i, \forall y \neq y' \}.
 \]

 - Prediction:

 \[
 h_2(x) = \arg \max_{y \in \Delta(x)} \sum \int p(w,z) F(x,y,z;w) \, dw
 \]

Alternating Minimization Alg.

- Factorization assumption:

 \[
 p_0(w,z) = p_0(w) \prod_{i=1}^{N} p_0(z_i), \quad p(w,z) = p(w) \prod_{i=1}^{N} p(z_i)
 \]

- Alternating minimization:

 - Step 1: keep \(p(z) \) fixed, optimize over \(p(w) \)

 \[
 \min_{p(w) \in \mathcal{F}'} KL(p(w)||p_0(w)) + C \sum \xi_i
 \]

 \[
 \mathcal{F}' = \{ p(w) : \int p(w) F_i(y;x,w) - \Delta F_i(y) || dw \geq -\xi_i, \forall y \}
 \]

 - Step 2: keep \(p(w) \) fixed, optimize over \(p(z) \)

 \[
 \min_{p(z) \in \mathcal{F}''} KL(p(z)||p_0(z)) + C \xi_i
 \]

 \[
 \mathcal{F}'' = \{ p(z) : \sum p(z) \int p(w) |\Delta F_i(y;x,w) - \Delta F_i(y) || dw \geq -\xi_i, \forall y \}
 \]

 \(\mathcal{F} = \mathcal{F}' \cap \mathcal{F}'' \)

 - Normal prior
 - Laplace prior

 \(M^N \) problem (QP)

 \(M^N \) problem (VB)

Equivalently reduced to an LP with a polynomial number of constraints
Record-Level Evaluations

- Overall performance:
 - Avg F1:
 - avg F1 over all attributes
 - Block instance accuracy:
 - % of records whose Name, Image, and Price are correct
- Attribute performance:

VI: Max-Margin/Max Entropy Topic Model – MED-LDA

(from images.google.cn)
LDA: a generative story for documents

- Bag-of-word representation of documents
- Each word is generated by ONE topic
- Each document is a random mixture over topics

```
Topic #1
image, jpg, gif, file, color, file, images, files, format

Document #1: gif jpg image current file color images ground power file current format file formats circuit gif images

0.8

0.2

Topic #2
ground, wire, power, wiring, current, circuit,

Document #2: wire currents file format ground power image format wire circuit current wiring ground circuit images files…

0.3

0.7
```

LDA: Latent Dirichlet Allocation

(Blei et al., 2003)

- Generative Procedure:
 * For each document d:
 - Sample a topic proportion $\theta_d \sim \text{Dir}(\alpha)$
 * For each word:
 - Sample a topic $Z_{d,n} \sim \text{Mult}(\theta_d)$
 - Sample a word $W_{d,n} \sim \text{Mult}(\beta_{Z_{d,n}})$

- Joint Distribution:
 \[
 p(\theta, z, W | \alpha, \beta) = \prod_{d=1}^{D} \prod_{n=1}^{N_d} p(\theta_d | \alpha) p(z_{d,n} | \theta_d) p(W_{d,n} | z_{d,n}, \beta)
 \]

- Variational Inference with $q(z, \theta) \sim (z, \theta|\alpha, \beta)$
 \[
 \mathcal{L}(q) \triangleq -E_q[\log p(\theta, z, W | \alpha, \beta)] - \mathcal{H}(q(z, \theta)) > -\log p(W | \alpha, \beta)
 \]

- Minimize the variational bound to estimate parameters and infer the posterior distribution
Supervised Topic Model (sLDA)

- LDA ignores documents’ side information (e.g., categories or rating score), thus lead to suboptimal topic representation for supervised tasks

- Supervised Topic Models handle such problems, e.g., sLDA (Blei & McAuliffe, 2007) and DiscLDA (Simon et al., 2008)

- Generative Procedure (sLDA):
 - For each document d:
 - Sample a topic proportion $\theta_d \sim \text{Dir}(\alpha)$
 - For each word:
 - Sample a topic $Z_{d,n} \sim \text{Mult}(\theta_d)$
 - Sample a word $W_{d,n} \sim \text{Mult}(\beta_{Z_{d,n}})$
 - Sample y_d

Generative Procedure (sLDA):

- Joint distribution:
 \[p(\theta, z, y, W|\alpha, \beta, \eta, \delta^2) = \prod_d p(\theta_d|\alpha) \prod_{i=1}^N \prod_n p(z_{d,n}|\theta_d)p(w_{d,n}|z_{d,n}, \theta)p(y_d|\eta^Tz_d, \delta^2) \]

- Variational inference:
 \[\mathcal{L}(q) \triangleq -E_q[\log p(\theta, z, y, W|\alpha, \beta, \eta, \delta^2)] - \mathcal{H}(q(\theta, z)) \geq -\log p(y, W|\alpha, \beta, \eta, \delta^2) \]

The big picture

<table>
<thead>
<tr>
<th>Max-Likelihood Estimation</th>
<th>Max-Margin and Max-Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>sLDA</td>
<td>MedLDA</td>
</tr>
</tbody>
</table>

- How to integrate the max-margin principle into a probabilistic latent variable model?
MedLDA Regression Model

- **Generative Procedure (Bayesian sLDA):**
 - Sample a parameter \(\eta \sim p(\eta) \)
 - For each document \(d \):
 - Sample a topic proportion \(\theta_d \sim \text{Dir}(\alpha) \)
 - For each word:
 - Sample a word \(Z_d, n \sim \text{Mult}(\theta_d) \)
 - Sample \(\omega_d \sim N(\eta^T Z_d, \delta^2) \)
 - Sample \(\mu_d \sim \mathcal{N}(\eta^T Z_d, \delta^2) \)

- **Def:**
 \[
P_1(\text{MedLDA}^+): \quad \min_{\alpha, \beta, \delta^2, \xi^d} \quad -\log p(y, W|\alpha, \beta, \delta^2) \leq \varepsilon + \xi_d, \mu_d \]
 \[
 \text{s.t. } \forall d : \quad \xi_d \geq 0, \mu_d \geq 0, v_d \geq 0 \]

- **Predictive Rule:**
 \[
 \hat{y} = E[Y|w_{1:N}, \alpha, \beta, \delta^2] = E_{q(Z, \eta)}[\eta^T Z|w_{1:N}, \alpha, \beta, \delta^2] \]

\[8/6/2009\] VLPR 2009 @ Beijing, China
Variational EM Alg.

- **E-step**: infer the posterior distribution of hidden r.v. \(y, z, \eta \)
- **M-step**: estimate unknown parameters \((\alpha, \beta, \delta) \)

- Independence assumption:
 \[
 q(\theta, z, \eta | y, \phi) = q(\eta) \prod_{d=1}^{D} q(\theta_d | \gamma_d) \prod_{n=1}^{N} q(z_{dn} | \phi_{dn})
 \]

\[
L(\gamma, \alpha, \phi, \beta, \delta, \xi, \mu, \nu, \epsilon \gamma^* = \xi^* \mu + \nu \xi^* + \epsilon) = \mathcal{L}(\eta) + C \sum_{d=1}^{D} (\zeta_d - 1) - \sum_{n=1}^{N} \sum_{j=1}^{K} \phi_{dnj} - \sum_{d=1}^{D} \xi_d (\mu_d - 1) \]

- Optimize \(L \) over \(\phi_{ij} \):
 \[
 \phi_{ij} \propto \exp \left(\mathbb{E}[\log \theta_{ij}] + \mathbb{E}[\log p(n_{ij}|\beta)] \right) + \frac{\mu_d \xi_d E[n]}{N} - \frac{2 \mathbb{E}[\eta^T \delta_u - \eta] + \mathbb{E}[\eta \eta^T]}{2N^2 \delta_u^2} + \frac{\mathbb{E}[\eta^T \eta]}{N (\mu^T - \mu^*)}
 \]
 - The first two terms are the same as in LDA
 - The third and fourth terms are similar to those of sLDA, but in expected version. The variance matters!
 - The last term is a regularizer. Only support vectors affect the topic proportions

- Optimize \(L \) over other variables. See our paper for details!

MedLDA Classification Model

- Normalization factor in GLM makes inference harder
- We use LDA as the underlying topic model

- Multiclass MedLDA Classification Model:
 \[
 P(\text{MedLDA}_c) : \min_{\eta, \phi, \gamma, \alpha, \beta, \delta} \mathcal{L}(\eta) + KL(q(\eta) || p_\theta(\eta)) + C \sum_{d=1}^{D} \xi_d \\
 \text{s.t. all } y \neq y_d : E[\eta^T \pi_d(y)] > 1 - \xi_d; \xi_d > 0
 \]

 - Variational upper bound \((q(\theta, z, \eta, \phi) \sim p(\theta, z|\mathbf{W}, \alpha, \beta)) \)
 \[
 \mathcal{L}(\eta) \overset{\text{var}}{=} -E[\log p(\theta, z|\mathbf{W}|\alpha, \beta)] - H(q(\theta, z)) \geq -\log p(\mathbf{W}|\alpha, \beta)
 \]

 - **Expected** margin constraints. \(\Delta \theta_d(y) = \pi(y_d, \tilde{Z}_d) - \pi(y, \tilde{Z}_d) \)

- **Predictive Rule**:
 \[
 y^* = \arg \max_y E[\eta^T \pi(y, \tilde{Z})|\alpha, \beta]
 \]
Variational EM Alg.

- Independence assumption:
 \[q(\theta, x|\gamma, \phi) = \prod_{j=1}^{D} q(\theta_d|\gamma_d) \prod_{n=1}^{N} q(z_{dn}|\phi_{dn}) \]

- Lagrangian function:
 \[
 L(q, q(\eta), \mu_d(y), \phi_d) = \mathcal{L}(q) + KL(q(\eta)||p_0(\eta)) + C \sum_{d=1}^{D} \xi_d - \sum_{d=1}^{D} v_d \xi_d \\
 + \sum_{d=1}^{D} \sum_{y \neq y_{ld}} \mu_d(y)(E[\eta^T \Delta f_d(y)] + \xi_d - 1) - \sum_{d=1}^{D} \sum_{i=1}^{N} c_{di}(\sum_{j=1}^{K} \phi_{di,j} - 1)
 \]

- Optimize \(L \) over \(\phi_d \):
 \[
 \phi_{di} \propto \exp(E[\log \theta] + E[\log p(w_{di} | \beta)] + \frac{1}{N} \sum_{y} \mu_d(y)E[\eta_{ld} - \eta_y]).
 \]

- Optimize \(L \) over other variables. See the paper for details

MedTM: a general framework

- MedLDA can be generalized to arbitrary topic models:
 - Unsupervised or supervised
 - Generative or undirected random fields (e.g., Harmoniums)

- MED Topic Model (MedTM):
 \[
 P(\text{MedTM}) : \min_{q(H), q(\gamma), \xi} \mathcal{L}(q(H)) + KL(q(\gamma)||p_0(\gamma)) + U(\xi) \\
 \text{s.t. expected margin constraints}
 \]

 - \(H \): hidden r.v.s in the underlying topic model, e.g., \((\theta, z)\) in LDA
 - \(\gamma \): parameters in predictive model, e.g., \(\gamma \) in sLDA
 - \(\xi \): parameters of the topic model, e.g., \(\xi \) in LDA
 - \(\mathcal{L} \): an variational upper bound of the log-likelihood
 - \(U \): a convex function over slack variables
Experiments

- **Goal:**
 - To qualitatively and quantitatively evaluate how the max-margin estimates of MedLDA affect its topic discovering procedure

- **Data Sets:**
 - **20 Newsgroups (classification)**
 - Documents from 20 categories
 - ~20,000 documents in each group
 - Remove stop word as listed in UMASS Mallet

 - **Movie Review (regression)**
 - 5006 documents, and 1.6M words
 - Dictionary: 5000 terms selected by tf-idf
 - Preprocessing to make the response approximately normal (Blei & McAuliffe, 2007)

Document Modeling

- **Data Set:** 20 Newsgroups
- **110 topics + 2D embedding with t-SNE** (van der Maaten & Hinton, 2008)
Classification

- **Data Set**: 20Newsgroups
 - Binary classification: “alt.atheism” and “talk.religion.misc” (Simon et al., 2008)
 - Multiclass Classification: all the 20 categories
- **Models**: DiscLDA, sLDA (Binary ONLY! Classification sLDA (Wang et al., 2009)), MedLDA, MedLDA+SVM
- **Measure**: Relative Improvement Ratio

 \[
 RR(M) = \frac{\text{precision}(M)}{\text{precision}(LDA + SVM)} - 1
 \]
Regression

- **Data Set**: Movie Review (Blei & McAuliffe, 2007)
- **Models**: MedLDA\textit{(partial)}, MedLDA\textit{(full)}, sLDA, LDA+SVR
- **Measure**: predictive R2 and per-word log-likelihood

\[pR^2 = 1 - \frac{\sum_{d} (y_d - \hat{y}_d)^2}{\sum_{d} (y_d - \bar{y}_d)^2} \]

Summary

- A general framework of MaxEnDNet for learning structured input/output models
 - Subsumes the standard M3Ns
 - Model averaging: PAC-Bayes theoretical error bound
 - Entropic regularization: sparse M3Ns
 - Generative + discriminative: latent variables, semi-supervised learning on partially labeled data

- Laplace MaxEnDNet: simultaneously primal and dual sparse
 - Can perform as well as sparse models on synthetic data
 - Perform better on real data sets
 - More stable to regularization constants

- PoMEN
 - Provides an elegant approach to incorporate latent variables and structures under max-margin framework
 - Experimental results show the advantages of max-margin learning over likelihood methods with latent variables
Margin-based Learning Paradigms

- SVM
 \[y = \text{sign}(w^T x + b) \]
 \[\min \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i \]
 \[\text{s.t. } \xi_i(w^T x_i + b) \geq 1 - \xi_i, \forall i \]

- MRF
 \[y = \text{sign}(\sum_{w} f(x)_w p(w)) \]
 \[\min_{p(w)} K(p|\pi) + C \sum_{w} \xi_w \]
 \[\text{s.t. } \pi(w)p(w) \geq 1 - \xi_w, \forall w \]

- Laplace Max-margin Markov Networks
 \[y^* = \arg \max_{y} \sum_{y'} \max_{w} f(x, y, y')_w \]
 \[\min_{w} \frac{1}{2} ||w||^2 + C \sum_{w} \xi_w \]
 \[\text{s.t. } w^T M(y) \geq \Delta(y), \forall y, y \neq y' \]

Acknowledgement

http://www.sailing.cs.cmu.edu/
Thanks!

Reference:

Markov Chain Prior

\[P(c) = P(c_1) \prod_{j=2}^{J} P(c_j | c_{j-1}) \]
Markov Chain Prior

\[P(c) = P(c_1) \prod_{j=2}^{J} P(c_j | c_{j-1}) \]

- \(c_j = c_{j-1} \) if
 1) the distance between the two SNPs is small, or
 2) the recombination rate between the two SNPs is small

Markov Chain Prior

\[P(c) = P(c_1) \prod_{j=2}^{J} P(c_j | c_{j-1}) \]

Poisson process

\[P(c_j | c_{j-1}) = \exp(-d_j \rho_j) \delta(c_j, c_{j-1}) + (1 - \exp(-d_j \rho_j)) \Pi_{c_{j-1}, c_j} \]

- \(\rho_j \): Recombination rate at \(j \)th SNP
- \(d_j \): Distance between \(j \)th and \((j-1)\)th SNP
- \(\Pi \): Transition probability matrix

\[
\begin{pmatrix}
\pi_0 & 1 - \pi_0 \\
1 - \pi_1 & \pi_1
\end{pmatrix}
\]
Variational Bayesian Learning (Cont')

\[\min_{p(w) \in P_1, q(\tau) \in \xi} L(p(w), q(\tau)) + U(\xi) \]

Initialize \(\langle w \rangle_0 \leftarrow 0, \Sigma_w^1 \leftarrow I \)

Solve an \(\Sigma^M \)N Problem \(\Sigma^M_w \)

\[t \leftarrow t + 1 \]

Update \(\Sigma^2_w \)

Variational Bayesian Learning (Cont')

Experimental Results

- Web data extraction:
 - Name, Image, Price, Description

- Methods:
 - Hierarchical CRFs, Hierarchical \(M^3 \)N
 - PoMEN, Partially observed HCRFs

- Pages from 37 templates
 - Training: 185 (5/per template) pages, or 1585 data records
 - Testing: 370 (10/per template) pages, or 3391 data records

- Record-level Evaluation
 - Leaf nodes are labeled

- Page-level Evaluation
 - Supervision Level 1:
 - Leaf nodes and data record nodes are labeled
 - Supervision Level 2:
 - Level 1 + the nodes above data record nodes

VLPR 2009 @ Beijing, China
8/6/2009